-
-
基于显微镜的可用于基因元件高通量定量表征的新技术
我们开发了一种创新的高通量显微平台,旨在加速基因元件的筛选和表征。该平台涉及到的专用设备也是课题组独立设计研发,解决了实验中样本准备瓶颈的问题,它具有高通量、自动化和快速扫描的特点,从样品制备到数据的自动化采集可在30分钟内完成,使得样本的准备和筛选变得更加高效。同时还可以在单细胞水平上进行了详细的分析,包括对生长速率等细胞特征的测量,为研究提供了更为全面的数据。
构建可持续生产并精确递送靶向铜绿假单胞菌药物工程菌株
在全球范围内,由铜绿假单胞菌引发的感染通常与高死亡率相关。铜绿假单胞菌自身对很多常用的抗生素并不敏感,还会通过生成生物被膜、基因突变和水平基因转移等方法快速对新抗生素建立耐药。新抗生素的开发速度缓慢、抗生素的滥用和过度使用等因素均加速了现有的抗生素危机。开发非抗生素类药物或疗法来替代或减少抗生素的使用对提高铜绿假单胞菌感染治疗效果和缓解抗生素危机至关重要。随着合成生物学技术和元件库的不断发展,基于细菌的工程菌疗法在治疗铜绿假单胞菌感染领域具有巨大的应用前景。研究者可根据实际需求自定义益生菌、病原菌等各类细菌的功能,并可利用活细菌原位生成和精确递送药物到达的特定组织和部位。
利用近红外光编程细菌全局表型强化实体瘤治疗效果
详细报道:将铜绿假单胞菌菌株改造成为具有实体瘤治疗功效的工程菌检测转录因子结合位点的新方法
我们发展了一种检测转录因子结合位点的新方法,通过诱导转录因子-胞嘧啶脱氨酶融合蛋白表达、高通量测序和单核苷酸多态性分析,获得转录因子的全基因组结合位点信息。AIDmut-Seq不需要对转录因子结合的片段进行捕获富集,而仅需对突变标记进行测序,因此AIDmut-Seq的整个工作流程仅包含细菌培养、基因组提取和生信分析三个步骤,不涉及其他复杂的实验操作,大大节省了实验人员的时间和劳动成本。
基因组层面测量铜绿假单胞菌的转录调控噪声
我们在模式致病菌铜绿假单胞菌中构建了一个包含3336个菌种的双色荧光转录报告系统文库,并利用文库在单细菌层次上全面分析了铜绿假单胞菌基因组中超过90%启动子的转录调控噪声。该研究提供了丰富的铜绿假单胞菌在单细胞层次上转录调控噪声的实验数据,增加了对铜绿假单胞菌种群个体差异化的理解,为探究和理解细菌如何适应复杂的生活环境提供了数据支持。
光遗传工具在控制细菌行为方面的应用
该综述首先介绍了光遗传系统的作用机理。以天然的光感受器(光敏蛋白)作为模板,通过突变、结构域互换或与其他蛋白质的模块化组合等方法可以构建出响应不同波长的光遗传系统。其次阐述了光遗传系统在转录层级和翻译后层级上的作用机理。最后综述了使用各类光遗传系统对细菌的新陈代谢、分裂、死亡、运动及生物被膜形成等行为的调控。
自适应跟踪照明系统实现单细菌行为的控制
我们建立了一种在单细胞水平上精确操纵铜绿假单胞菌的基因表达和细菌行为的光遗传控制方法,自适应跟踪照明(adaptive tracking illumination, ATI)系统。该方法通过将空间光调制器的图案投影到高倍油镜的视场中,实现高精度的显微镜微投影。计算机再将获取到的显微镜明场图像经过实时地图像分割和细菌识别,获取细菌的实时轮廓及位置,通过反馈算法将细菌的轮廓投影到显微镜的视场中,实现对单细菌的精确光刺激。进一步结合实时的细菌追踪算法实现对目标细菌进行连续的光刺激,从而达到精确和持续地操纵运动和分裂的单细胞行为。
光遗传方法在宿主体内控制细菌致病能力
我们基于院内感染中常见的机会性致病菌铜绿假单胞菌的GacS-GacA双组分系统,开发了新型光敏蛋白YGS24。GacS-GacA双组分系统在铜绿假单胞菌急性和慢性感染模式的切换上起到关键性的调控作用,是Gac/Rsm全局调控网络的核心的上游元件。以YGS24取代细菌中原有的GacS蛋白,就能对该细菌的感染行为进行精确的光调控。在秀丽隐杆线虫致病模型中,作者成功利用蓝光提高了细菌的致病能力。此外,利用显微镜和微流控技术,作者成功地对线虫肠道内的铜绿假单胞菌的致病通路进行了光调控。此光遗传学技术的建立,可以实现对宿主体内细菌致病能力的定量和时间控制,从而可以揭示其局部和系统对宿主健康和死亡的影响。更进一步,新的技术的建立有望探索和发现致病菌新的致病机理,进而加速相关创新疗法的开发。
用光学方法控制细菌的运动行为
我们在铜绿假单胞菌底盘上引入了光敏性的cAMP合成酶,经过一系列改造,构建得到一种工程菌株(命名为pactm)。该工程菌株可以响应蓝光的照射而可逆地改变自身蹭行运动的活性以及对宿主的感染能力。在蓝光照射下,pactm的cAMP应答启动子表达量增加了15倍,蹭行运动活性增加了8倍。裸鼠皮下感染模型显示,蓝光照射使pactm感染引起的小鼠皮肤损伤面积增加了14倍,因此这一工作为可控感染实验模型的构建提供了一个解决方法。此外,作者还通过宏观的光照模式设计,成功实现了对细菌群体扩张方向的引导,为研究微生物之间的相互作用提供了便利。
其他相关报道:https://phys.org/news/2021-05-strain-optically-bacteria-movement-behavior.html
合成基因线路帮助精确定量细菌中的基因重排事件
A synthetic genetic circuit to quantify repeat deletion in bacteria
重复序列广泛地存在于原核和真核细胞基因组中,定量重复序列删除的发生率是研究DNA重排的重要手段。传统的基于抗性基因的定量方法需要引入抗生素筛选,不仅会带来较高的假阳性率,而且抗生素的引入可能影响宿主细胞的生理过程。同时,基于抗性基因的定量方法受限于抗性基因编码序列的长度,直接影响在重复序列删除率定量时对重复序列长度的定量研究。针对以上问题和原有方法的不足,我们设计了一套基因线路将DNA重排事件直接关联到不同颜色荧光蛋白的表达,再通过高通量单细菌数据采集和数据分析,就可以直接读出在细菌群体中偶发的重排事件。
饥饿使细菌生物被膜更强壮
铜绿假单胞菌是临床中常见的一种致病菌,其生物被膜中包含的胞外多糖,外DNA,以及外分泌蛋白等共同构成了胞外聚合物。近年来,Sophie de Bentzmann等人发现在铜绿假单胞菌中过表达响应调节蛋白PprB后,四型菌毛b 、CupE菌毛、以及BapA黏附蛋白等表达的上调可共同促进一类新型超级生物被膜的形成。然而,对于PprB调节系统何时开启以及响应哪种环境信号目前尚不清楚。我们通过构建荧光报告菌株的方法对PprB下游控制相关基因的转录进行定量测量,发现铜绿假单胞菌在碳源饥饿的环境下大幅度调高了PprB下游基因的表达。
在微生物细胞体内实现多色荧光信号的同时成像
针对绝大数的信号传导系统,我们迫切需要选取多种荧光蛋白以实现对系统内上下游多个信号(大于2个)的同时检测,但光谱重叠导致会不可避免地导致不同荧光信号之间相互干扰,导致信号失真,进而无法得到可靠的数据。针对以上问题,我们提供了一套完整的多色荧光蛋白同时使用的解决方案, 包括多色荧光系统的分子生物学工具盒和多种荧光信号的精确分离算法。
新型显微镜技术实现对细菌“躺姿”的观测
浮游状态的细菌粘附到表面是细菌生物被膜形成的第一步,而生物被膜的形成会导致致病菌介导的院内感染易反复且难以清除。因此,在细菌粘附到表面后,研究细菌的表面行为以及之间的联系有助于我们更全面、系统地了解生物被膜的形成机制和感染致病策略,并且可以为治疗细菌感染相关的临床治疗提供指导。
在单细胞水平上创建荧光计时器用以检测致病持留菌
微生物持留菌是某个细菌群体中一定比例表型异化的小亚群,这些细菌可耐受致死浓度的抗生素作用。持留菌被认为是导致生物被膜形成和难治性感染的重要原因。在由细菌导致的生物被膜感染治疗中,抗生素可以杀死非持留的浮游菌和被膜菌,但对于生物被膜中的持留菌,抗生素不能将其完全杀灭,残存的持留菌在体内抗菌药物浓度降低或免疫力下降时可以再次引起感染,这常常会导致顽固的持续性或复发性感染。另外,持留菌在慢性感染中具有普遍而又密切的关系。因此,对持留菌的研究引起了学术界和医学界广泛的关注。
细菌生物被膜形成的初始粘附机制
铜绿假单胞菌 (Pseudomonas aeruginosa,PA) 是医院感染的常见条件致病菌之一, 是导致免疫功能不全病人发生感染的常见致病菌。铜绿假单胞菌介导的院内感染易反复且难以清除,主要原因是其能形成生物被膜 (biofilms)。生物被膜是由细菌及其分泌的保外基质组成,生物被膜的形成可以保护细菌免受物理、化学或机体免疫反应的攻击。因此,更深层地理解生物被膜的形成过程对如何应对铜绿假单胞菌感染具有极其重要的临床指导意义。
对活细菌生物被膜的生物打印
近年来,生物打印技术越来越多地应用到生物材料与再生医学领域,。利用生物打印技术打印活的哺乳动物细胞也因其在组织工程与再生医学、药物研发甚至癌症治疗等的广泛应用而越来越受到关注。不同于哺乳动物细胞,细菌常能形成致密的生物被膜而表现出极强的生存能力,而不同微生物形成的生物被膜能够生产不同的功能生物高分子,降解特定的有机化合物,例木醋杆菌在气液界面生产的细菌纤维素广泛应用于医学植入体;恶臭假单胞菌能够降解诸如苯及其衍生物而应用于污水处理。因此对活生物被膜的生物打印来获取生物被膜功能材料成为了重要的研究课题。
细菌界的雷锋是怎么逆袭的?
绿脓杆菌中合作演化稳定的机制
光照控制的方法瓦解顽固细菌生物膜
一般人体在感染致病细菌后,体内的免疫细胞会释放出氧化剂破坏细菌的结构并使之死亡,再利用吞噬作用将其消化。人类利用抗生素来杀死游离态细菌能做到得心应手,然而,一旦细菌形成生物膜,传统的方法就失去了效用,严重的院内感染便由此而来,病人往往无药可救。所以生物膜的调控是与人类生活息息相关的重要课题。
-