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Decoding frequency-modulated signals 
increases information entropy in bacterial 
second messenger networks
 

Rongrong Zhang    1,2,6, Shengjie Wan1,2,6, Jiarui Xiong1,3, Lei Ni1,2, Ye Li    1,2, 
Yajia Huang1,2, Bing Li1,2, Mei Li1,2, Shuai Yang    4,5   & Fan Jin    1,2 

Bacterial second messenger networks transmit environmental information 
through both amplitude and frequency modulation strategies. However, 
the mechanisms by which cells decode frequency-encoded signals remain 
poorly understood. By reconstructing the cyclic adenosine monophosphate 
second messenger system in Pseudomonas aeruginosa, we demonstrate 
that frequency-to-amplitude signal conversion emerges through three 
distinct filtering modules that decode frequency-encoded signals into 
gene expression patterns. Our mathematical framework predicts a range 
of frequency filtering regimes controlled by a dimensionless threshold 
parameter. We validated these using synthetic circuits and an automated 
experimental platform. Quantitative analysis reveals that under the given 
parameter conditions, frequency modulation expands the accessible state 
space more substantially than amplitude modulation alone. The total 
number of accessible states scales as the square of the number of regulated 
genes for frequency-enhanced control, compared with the power of 0.8 for 
amplitude-only control. This results in approximately two additional bits 
of information entropy in three-gene systems when using frequency-based 
control. Our findings establish the fundamental principles of 
frequency-based signal processing in bacterial second messenger networks, 
revealing how cells exploit temporal dynamics to regulate multiple genes 
and expand accessible state spaces. This provides insights into both cellular 
information physics and design principles for synthetic biology.

Information encoding and transmission in physical systems can be 
achieved through two fundamental mechanisms: amplitude modula-
tion (AM) and frequency modulation (FM)1. Although the physics of 
these mechanisms is well understood in classical signal processing, 
their implementation in molecular networks presents unique chal-
lenges that probe fundamental questions about how cells decode and 
process information. The dichotomy between AM and FM is particularly 
striking in cellular networks, where evolution has produced sophisti-
cated regulatory systems that utilize both encoding strategies2–5, raising 

deep questions about the physical principles governing biological 
signal decoding.

The physics of cellular information processing emerges from 
the interplay between nonlinear dynamics and network topology. 
Although natural systems have evolved to exploit both AM and FM6,7, 
frequency-based regulation appears as a recurring motif across diverse 
cellular contexts—from calcium oscillations5 to hormone secretion 
patterns8 and transcription factor dynamics9–12. The ubiquity of FM 
suggests that it represents a fundamental physical principle rather 
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Physical principles of frequency-to-amplitude 
signal conversion in cAMP second messenger 
networks
The native cAMP regulatory network in P. aeruginosa involves com-
plex signalling mechanisms15,31, including multiple upstream adenylyl 
cyclases responding to various environmental stimuli, and sophisti-
cated feedback loops through Vfr and CpdA (Fig. 1a, top). This inher-
ent complexity makes isolating and studying frequency-dependent 
signal processing nearly impossible in natural systems. To overcome 
this challenge, we reconstructed a streamlined cAMP signalling 
pathway by replacing endogenous cAMP synthesis machinery with 
a blue-light-inducible system to precisely simulate environmental 
perturbations. Additionally, we replaced the native promoters of the 
cAMP phosphodiesterase CpdA and the effector protein Vfr with con-
stitutive promoters insensitive to cAMP regulation, allowing precise 
control over their expression levels. By coupling a Vfr–cAMP respon-
sive promoter (Plac) with the sfGFP reporter gene, we established a 
quantitative monitoring system for signal output (Fig. 1a, bottom).

Notably, this reconstructed synthetic signalling system exhibits 
sophisticated hierarchical signal processing characteristics that natu-
rally emerge from distinct reaction kinetics operating across multi-
ple timescales (Supplementary Note 1). Through rigorous timescale 
analysis based on established kinetic parameters from the literature, we 
identified a critical temporal hierarchy within the system that enables 
sequential information processing (Fig. 1b). The thresholding filter 
operates at the fastest timescale with characteristic time Tc2 (10−2–100 s), 
facilitating rapid Vfr–cAMP binding interactions and promoter acti-
vation dynamics32. The wave converter functions at an intermediate 
timescale with characteristic time Tc1 (100–101 s), governed primarily by 
CpdA-mediated cAMP degradation kinetics33. The integrator operates 
at the slowest timescale with characteristic time Tc3 (103–104 s), deter-
mined by the intrinsic rates of protein expression and degradation34.

This pronounced temporal separation (Tc2 ≪ Tc1 ≪ Tc3) is not merely 
incidental but rather essential for proper circuit function, enabling 
sequential signal processing and minimizing interference between 
reaction networks35. The system’s distinct timescales naturally partition 
its functionality into three modules with well-defined transfer func-
tions, collectively forming what we term the frequency-to-amplitude 
converter (FAC; Fig. 1c). This modular architecture allows us to sys-
tematically analyse and predict how frequency-encoded signals are 
progressively transformed as they propagate through the circuit, 
providing a physical basis for understanding biological frequency 
demodulation (Fig. 1d).

The wave converter (M1) functions as a signal transduction mod-
ule, transforming discrete light inputs into continuous analogue saw-
tooth patterns of cAMP concentration characterized by a defined peak 
(sH) and trough (sL). This transformation occurs through the coordi-
nated action of two opposing processes: the optogenetic control mod-
ule that regulates cAMP synthesis in response to light stimuli, and the 
degradation mechanism mediated by CpdA that systematically hydro-
lyses cAMP. The interplay between these synthesis and degradation 
kinetics establishes a dynamic equilibrium, generating characteristic 
concentration oscillations of intracellular cAMP with precisely defined 
waveforms (Fig. 1b). This module’s dynamics are critical for frequency 
detection, as they encode temporal information into concentration 
profiles that can be further processed by downstream components.

The thresholding filter (M2) serves as a nonlinear signal processor, 
converting oscillating cAMP signals through concentration-dependent 
complex formation with the effector protein Vfr. When Vfr–cAMP com-
plex concentrations exceed specific response thresholds, they activate 
target promoters, implementing frequency-selective signal processing 
through cooperative molecular interactions. This molecular filtering 
mechanism transforms continuous cAMP oscillations into promoter 
activation events whose temporal pattern depends critically on both 
input frequency and threshold characteristics.

than a specialized adaptation. Despite its prevalence, the mechanisms 
enabling cells to decode these frequency-encoded signals remain 
poorly understood.

Second messenger systems, including those based on cyclic AMP 
(cAMP), represent one of the primary channels through which cells 
process and transmit fluctuating signals13. These molecular interme-
diaries translate external stimuli into internal cellular responses, often 
serving as critical nodes in information processing networks. In bacte-
rial systems, cAMP acts as a central regulator that coordinates gene 
expression in response to environmental changes, making it an ideal 
candidate for studying frequency-dependent signal processing14,15.

Synthetic biology has achieved remarkable progress in engi-
neering amplitude-modulated gene circuits, from toggle switches to 
oscillators and logic gates that perform sophisticated computational 
operations16–20. However, creating synthetic systems that can effec-
tively decode frequency-modulated signals has proven substantially 
more challenging. Although pulse-width modulation (PWM) offers one 
approach for dynamic regulation21–24, it fundamentally differs from the 
rich frequency-dependent behaviours observed in natural systems25–28 
in which information is encoded purely in transition frequencies and 
constant time averages are maintained. This disconnect between natu-
ral and engineered systems highlights a critical gap in our understand-
ing of how temporal dynamics are processed in cellular contexts.

Quantitative understanding of frequency-modulated second mes-
senger systems has remained limited due to experimental complexi-
ties. The dynamic nature of these signals, combined with the intricate 
feedback mechanisms inherent to natural cAMP networks13,15, has com-
plicated efforts to establish clear frequency response relationships. 
Previous theoretical work has explored specific aspects of biological 
FM, such as frequency-to-amplitude coordination29 and energy opti-
mization in oscillatory systems30. However, a comprehensive physical 
framework that connects molecular dynamics to frequency-decoding 
capabilities has remained elusive. Such a framework must bridge mul-
tiple scales—from microscopic molecular interactions to macroscopic 
information flow—as well as accounting for the fundamental con-
straints of biochemical networks.

To address this challenge, we reconstructed cAMP second mes-
senger networks in Pseudomonas aeruginosa, creating a simplified 
and controllable signal transduction system by replacing natural 
cAMP input pathways with light-controlled production and disrupt-
ing downstream transcriptional feedback systems. This synthetic 
approach enabled the precise control and quantification of cAMP 
dynamics without interference from endogenous regulatory mecha-
nisms. Using this reconstructed circuit, we present a unified theoreti-
cal and experimental investigation of how biological systems decode 
frequency-modulated information. We develop an analytical frame-
work that reveals a phase transition between distinct filtering behav-
iours in molecular networks, controlled by a dimensionless parameter 
that emerges from underlying biochemical dynamics. This framework 
enables quantitative predictions about how cellular systems convert 
frequency-encoded signals into precise amplitude outputs across 
different dynamical regimes.

To comprehensively characterize these dynamic circuits, we con-
structed an automated high-throughput platform for the systematic 
validation of our theoretical predictions. Our results demonstrate 
that the successful decoding of frequency-modulated signals enables 
biological networks to mathematically expand their accessible state 
space beyond what is achievable through AM alone. Under specific 
conditions, coordinated frequency and duty cycle control notably 
increases the total information entropy compared with amplitude-only 
modulation, with a more favourable scaling as the number of regulated 
genes increases. In a three-gene regulatory system, this enhancement 
through joint frequency-to-amplitude control yields approximately 
two additional bits of information entropy—effectively multiplying the 
number of distinguishable expression states by nearly four.

http://www.nature.com/naturephysics
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The integrator (M3) acts as the system’s memory element, captur-
ing transcriptional activity through protein expression from the acti-
vated promoters. This module performs the temporal averaging of the 
promoter activation events, generating stable protein levels that reflect 
the time-integrated transcriptional activity. By converting dynamic 
frequency information into steady-state protein concentrations, this 

module completes the frequency-to-amplitude conversion process, 
providing a stable readout of the original frequency-encoded signals.

Through this sequential processing, the FAC achieves robust 
frequency-to-amplitude conversion (Fig. 1d). The frequency dis-
crimination capabilities of this architecture emerge from the distinct 
behaviours of each module, particularly the interaction between the 

b

c

Characteristic 
timescale (s)

10410310210110010–110–210–3

Tc2

bPAC*
k

cAMP

CpdA

Vfr–cAMP
complex

Plac

Activated Plac mRNA sfGFP
kr2

kr1

γ

k1
k2

kdeg1 kdeg2

kf1

kf2

cAMP + Vfr

+
+

ø
ø ø

M2 M1 M3

M1 M2 M3

Tc1 Tc3

CyaA
Vfr

cAMP

CyaB
Vfr–cAMP

Gene 1

Gene 2

Gene n

CpdA

Extracellular
cues  

Dynamic signal decoding 

Vfr

cAMPbPAC Vfr–cAMP Plac promoter sfGFP

CpdA

Reconstruction

Blue
  light  

Protein 
   expression  

Di�erential
gene expression

…

a

Frequency
input

Amplitude
output

Wave converter
(M1)

Thresholding filter
(M2)

Integrator
(M3)

FAC

Cell

Second messenger network

Time Time

s* 

Am
pl

itu
de

Total transfer function

High-pass 
FAC

Low-pass 
FAC

Frequency

Am
pl

itu
de

M2

M2

Time

M3

M3

High frequency
Low frequency

High frequency 
Low frequencyHigh frequency

Low frequency

 s* 

d

e

sL

sH

Input (I, D, T)

Width
Period

M1
Threshold s*

M2 M3

Time Time Time Time

Fig. 1 | Reconstruction of cAMP second messenger networks and the 
hierarchical architecture of frequency-to-amplitude signal conversion.  
a, Comparison of cAMP signalling pathways. Top: native complex network in  
P. aeruginosa with feedback loops. Bottom: streamlined reconstructed pathway 
with light-inducible cAMP synthesis and constitutive CpdA/Vfr expression 
for precise control and sfGFP monitoring. b, Timescale analysis revealing 
hierarchical signal processing across three temporal domains: thresholding filter 
(Tc2), wave converter (Tc1) and integrator (Tc3). Temporal separation (Tc2 ≪ Tc1 ≪ Tc3) 
enables sequential processing. c, FAC architecture integrating a wave converter 
(M1), thresholding filter (M2) and integrator (M3) modules, each operating 

within the characteristic timescales. d, Theoretical signal transformation 
through the FAC system. M1 converts periodic inputs to cAMP sawtooth 
waveforms, M2 processes oscillations through threshold-dependent activation 
and M3 integrates filtered signals into stable protein expression. e, Filtering 
characteristics in alternative FAC configurations using idealized threshold 
filtering. Top: high threshold creates low-pass behaviour. Bottom: low threshold 
establishes high-pass behaviour. Data in d and e are generated using ideal 
threshold approximation; detailed solutions are provided in in Supplementary 
Notes 2 and 3.
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wave converter’s dynamic output and the thresholding filter’s activa-
tion threshold.

The system’s frequency selectivity is primarily determined by the 
threshold setting (s*) of the thresholding filter, which emerges from 
the underlying biochemical properties of Vfr–cAMP interactions. 
With high threshold settings (Fig. 1e, top), the filter preferentially 
blocks high-frequency signals and partially transmits low-frequency 
signals, resulting in a low-pass FAC configuration. Conversely, 
low-threshold settings (Fig. 1e, bottom) enable the complete trans-
mission of high-frequency signals and attenuate low-frequency sig-
nals, thereby establishing a high-pass FAC configuration. This occurs 
because high-frequency signals consistently exceed the threshold, 
whereas low-frequency signals fall short or only intermittently cross 
the threshold (Supplementary Notes 2–4 provide detailed analytical 
solutions and parameter values).

Our systematic timescale analysis and chemical reaction network 
(CRN) modelling enabled both temporal signal simulation and com-
prehensive exploration of dynamic interactions within the circuit 
(Extended Data Fig. 1 and Supplementary Tables 1–3). This recon-
structed architecture, which we name the frequency-decoding cAMP 
circuit (FDCC), provides a robust platform for implementing and ana-
lysing frequency-based gene regulation in second messenger networks 
and reveals fundamental physical principles governing biological 
frequency demodulation.

Analytical framework for frequency-to-amplitude 
signal conversion
Understanding the physical principles of frequency-based informa-
tion processing in biological networks requires bridging microscopic 
molecular dynamics with macroscopic system behaviours. To achieve 
this, we developed two complementary theoretical frameworks. A CRN 
model (Extended Data Tables 1 and 2 and Supplementary Tables 1–3) 
captures detailed molecular reaction kinetics36, providing comprehen-
sive simulation capabilities but yielding a parameter space too complex 
for direct insight extraction. Complementing this, we constructed a 
dimensionally reduced analytical model that extracts essential system 
characteristics34,37, revealing the fundamental physics governing the 
system behaviour. This multilevel approach enables comprehensive 
analysis from molecular interaction details to system-level properties.

The analytical framework strategically exploits the natural tem-
poral hierarchies within the system, where M2, M1 and M3 operate 
on millisecond-to-second, second-to-minute and minute-to-hour 
timescales, respectively. This pronounced temporal separa-
tion (Tc2 ≪ Tc1 ≪ Tc3) enables the modular analysis of each compo-
nent, leading to analytically tractable equations that reveal how 
frequency-encoded signals are systematically transformed as they 
propagate through the circuit. By decomposing the system into func-
tionally distinct modules operating at separate timescales, we can 
analyse each component independently and capture their coupled 
interactions through well-defined interfaces. This mathematical 
approach not only simplifies the analysis but also provides deeper 
physical insights by isolating the essential mechanisms responsible 
for frequency discrimination. The resulting analytical framework 
reveals how specific parameter combinations give rise to distinct 
high-pass and low-pass filtering behaviours, establishing a quan-
titative foundation for understanding and engineering biological 
frequency-to-amplitude conversion systems.

Our modular analysis approach enables the derivation of 
closed-form expressions that describe the system’s steady-state behav-
iour under periodic stimulation, providing a predictive framework for 
how frequency-encoded information is processed and transformed 
into stable gene expression patterns. This analytical tractability stands 
in contrast to the computational complexity of direct CRN simulations, 
offering both mechanistic understanding and practical design princi-
ples for frequency-responsive biological circuits.

In the M1 module, we established a detailed analysis of the reac-
tion kinetics (Supplementary Note 2) to characterize the system’s 
steady-state behaviour. Under periodic light stimulation, the light- 
sensitive adenylyl cyclase and phosphodiesterase in M1 regulate the 
intracellular cAMP concentration through its synthesis (rate k) and 
hydrolysis (rate γ), respectively. The system achieves a stable oscillatory 
state, exhibiting a periodic waveform (Fig. 1d). We derived an analytical 
solution for this dynamic equilibrium within one period, expressed as

s(τ) = {
1 − (1 − sL)e−τ, 0 ≤ τ ≤ ϕD

sHe−τ+ϕD, ϕD < τ ≤ ϕ . (1)

All variables and parameters are presented in the non-dimensionalized 
form. A comprehensive summary of symbols and abbreviations is pro-
vided in Extended Data Tables 1and 2 and Supplementary Table 4. The 
duty cycle D represents the fraction of the period during which the light 
stimulus is active. The non-dimensional concentration s(τ) represents 
the relative cAMP level normalized to its theoretical maximum concen-
tration (k/γ). The time and period are normalized to the characteristic 
timescale of cAMP hydrolysis (γ−1), yielding the non-dimensional time 
τ = γt and period ϕ = γT, where γ is the hydrolysis rate of cAMP. Under 
these steady-state conditions, the non-dimensional maximum and 
minimum levels of cAMP (sH and sL, respectively) are given by

sH(ϕ,D) =
1 − e−ϕD
1 − e−ϕ

, (2)

sL(ϕ,D) =
eϕD − 1
eϕ − 1

. (3)

M2 processes the output signal from M1 through two sequential 
Hill-type binding interactions: first, the cooperative binding between 
cAMP and the transcription factor Vfr, characterized by the micro-
scopic dissociation constant K1 (μM), and second, the binding of the 
Vfr–cAMP complex to regulatory promoters, characterized by the 
microscopic dissociation constant K2 (μM). These Hill processes exhibit 
the fastest dynamics among the three modules, with their character-
istic time Tc2 being substantially shorter than Tc1. This pronounced 
timescale separation allows us to assume that the dynamic response 
of M2 is effectively instantaneous relative to the cAMP oscillations 
generated by M1. Consequently, in our theoretical model, the temporal 
evolution of M2’s output depends solely on the time-varying input s(τ) 
from M1, with the two Hill processes modulating the signal amplitude 
(Supplementary Note 3). Following this processing, the fraction of 
activated promoters ψ(τ) can be analytically expressed as

ψ(τ) = λα2s(τ)2

1 + (λ + 1)α2s(τ)2
. (4)

The dimensionless parameter λ = [Vfr]0/K2 denotes the relative abun-
dance of transcription factor Vfr normalized to the microscopic dis-
sociation constant K2 for Vfr-promoter binding, capturing the impact 
of transcription factor availability in the system. The parameter 
α = (k/γ)/K1 characterizes the cAMP signal strength, defined as the ratio 
of maximum achievable cAMP concentration (k/γ) to the microscopic 
dissociation constant K1 for Vfr–cAMP binding, reflecting the relative 
strength of the cAMP signalling pathway.

M3 functions to integrate and average the output from M2, rep-
resenting the protein expression level from promoters activated by 
Vfr–cAMP complexes. Assuming negligible basal expression from the 
regulated promoters, we derived the theoretical relationship between 
periodic input signals and steady-state protein expression (Supplemen-
tary Note 4). In the steady state, the time-averaged protein expression 
level over one period can be expressed as

http://www.nature.com/naturephysics
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̄y = 1
ϕ ∫

ϕ

0
ψ(τ)dτ, (5)

where ̄y represents the dimensionless protein expression level normal-
ized to its maximum achievable value. Through mathematical analysis 
of this temporal integration, we obtained an analytical solution for the 
steady-state expression level:

̄y(α,ϕ,D, λ) = 1
ϕ
[ λα2

1+(λ+1)α2
ln [√

1+(λ+1)α2s2H

√1+(λ+1)α2s2L
]

− αλ/√λ+1
1+(λ+1)α2

tan−1 ( α√λ+1(sH−sL)
1+(λ+1)α2sLsH

)] + λα2D
1+(λ+1)α2

. (6)

This solution quantitatively describes how the system transforms 
frequency-encoded inputs into defined protein expression levels 
through the sequential processing of the three modules.

In the theoretical analysis, we first examined the system behav-
iour when D equals 1. Under this condition, sH = sL = 1, and equation (6) 
reduces to a pure amplitude-dependent expression:

y∗ = ̄y(D = 1) = ̄y(α, λ) = λα2
1 + (λ + 1)α2

, (7)

where y* represents the FDCC response at full duty cycle, determined 
by parameters α and λ. The amplitude dependence enters through 
the parameter α = k/(γK1), where the effective cAMP synthesis rate 
k = k0[bPAC*] is directly controlled by light intensity I through the con-
centration of photoactivated adenylyl cyclase [bPAC*]. Higher light 
intensities increase [bPAC*], thereby elevating k and α, which directly 
modulates the output response y*. This simplified case serves as a refer-
ence point for understanding the system’s basic amplitude response 
characteristics.

To analyse the frequency-dependent behaviour, we identified a 
critical threshold in M2’s filtering characteristics by examining the 
inflection point of equation (4) (where d2ψ/ds2 = 0). This is the point at 
which the system’s response sensitivity is the maximum, as it marks 
the steepest rate of change in the input–output relationship. This 
analysis yielded a threshold value s* for the non-dimensional cAMP 
concentration: s∗ = 1/√3α2(λ + 1) (Supplementary Note 5).

This threshold characterizes the filtering properties of M2, rep-
resenting the concentration at which the rate of change in promoter 
activation is the maximum. Using this threshold definition, we com-
bined equations (6) and (7) to obtain a comprehensive expression for 
the system response:

̄y(α, f,D, λ) = y∗ (D + G), (8)

where

G( f,D, s∗) = f [ ln [
√

1+(sH/√3s∗)
2

1+(sL/√3s∗)
2 ]

−√3s∗ (tan−1 ( √3s∗(sH−sL)

(√3s∗)
2
+sHsL

))]

(9)

Here f = 1/ϕ represents the non-dimensionalized frequency.
This formulation reveals a sophisticated decomposition of the 

system’s response into three fundamental components (Fig. 2a). First, 
the AM component y* establishes the baseline response level, which is 
primarily governed by the system’s intrinsic biochemical parameters 
including the relative abundance of transcription factors (λ) and the 
strength of cAMP signalling (α). Second, the PWM, represented by 
D, directly captures the temporal characteristics of the input signal 
through its duty cycle, reflecting the proportion of time the system 

is actively stimulated within each period. Finally, the FM component 
G introduces a dynamic, frequency-dependent modification to the 
response, enabling the system to discriminate between signals of dif-
ferent frequencies and maintain the same duty cycle and amplitude. 
Together, these three components form a comprehensive framework 
that describes how the FDCC integrates and processes complex tem-
poral signals into defined gene expression patterns.

To facilitate a more intuitive analysis of the system’s behaviour, 
we normalized the output by introducing

Y =
̄y

y∗ = D + G, (10)

which represents the total normalized response combining both duty 
cycle and frequency-dependent effects (Supplementary Note 6). This 
normalization allows us to examine the frequency response character-
istics independently of the amplitude scaling factor y*.

To establish a comprehensive macroscopic perspective of the 
FDCC function, we focused on the difference between high-frequency 
and low-frequency responses, introducing the metric YHF – YLF, where 
YHF and YLF represent the normalized outputs at high and low frequen-
cies, respectively. Although the analytical expression for this difference 
is complex in its general form, we found that it simplifies remarkably in 
the limiting cases of very high and very low frequencies (Supplemen-
tary Note 7). The simplified expression primarily depends on two key 
parameters: threshold s* and duty cycle D.

This insight led us to construct phase diagram (Fig. 2b) visualizing 
YHF – YLF as a function of these two critical parameters. The diagram 
reveals a clear dichotomy in the system’s behaviour. As s* increases, 
YHF – YLF transitions from positive to negative values, indicating a shift 
from high-pass to low-pass characteristics. Conversely, increasing D 
promotes a transition from low-pass to high-pass behaviour. This dual 
dependence is particularly important because D serves as an experi-
mentally controllable parameter, offering a practical means to modu-
late the system’s frequency response within an appropriate range of s*.

Through careful mathematical analysis, we identified a critical 
boundary between these two regimes, expressed by the relationship 
D = 3s*2. This elegant relationship (Fig. 2b (dashed lines) and Supple-
mentary Note 7) provides a clear demarcation between high-pass and 
low-pass behaviours, offering valuable guidance for circuit design 
and optimization.

Further quantitative analysis of the YHF and YLF metrics revealed 
fundamental differences between the high-pass and low-pass configu-
rations. High-pass FACs could achieve larger differences in response 
between high and low frequencies (|YHF – YLF|) when optimally config-
ured, providing greater potential for frequency discrimination. This 
enhanced capacity for distinguishing frequency differences makes 
high-pass configurations particularly attractive for engineering precise 
frequency-dependent responses. Moreover, we observed a critical limi-
tation in low-pass configurations: for any given s*, low-pass responses 
generally produced smaller Y values across their operating range. This 
characteristic poses practical challenges, as smaller output signals 
are inherently more susceptible to experimental noise and cellular 
stochasticity, potentially compromising measurement accuracy and 
reliability (Fig. 2c). Our comprehensive stochastic analysis demon-
strates that although intrinsic cellular noise introduces variability in 
system response, the core frequency discrimination capabilities remain 
intact(Extended Data Fig. 1), with noise effects primarily dependent on 
transcriptional components and signal strength relative to the theo-
retical detection threshold. We analysed how system noise affects the 
response to high- and low-frequency signal decoding, confirming that 
high-pass configurations maintain superior noise tolerance compared 
with low-pass systems (Supplementary Fig. 1 and Supplementary Note 
8.1). This inherent limitation of low-pass configurations, combined 
with their reduced frequency discrimination capability, provided 
a clear rationale for our experimental strategy. Consequently, we 
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prioritized the investigation and implementation of high-pass FACs and 
conducting more limited studies of low-pass configurations primarily 
to validate our theoretical framework.

To develop a more comprehensive understanding of the system’s 
behaviour, we expanded our analysis through additional phase  
diagrams that explored the interplay between s*, D and the non- 
dimensionalized frequency f. These diagrams mapped their influences 
on both frequency response function G and final output ̄y( f,D, s∗)  
(Supplementary Fig. 2). This expanded parameter space exploration 
not only validated our theoretical predictions but also provided  
practical insights for optimizing circuit performance across different 
operating conditions.

The dynamic behaviour of M1 reveals sophisticated signal process-
ing capabilities (Fig. 2d). At constant periods, higher D values lead to 
increased maximum (sH) and minimum (sL) signal levels, demonstrating 
how the system accumulates the signal during the ‘on’ phase of each 
cycle. When the duty cycle is fixed, increasing frequency causes sH to 
decrease whereas sL rises, both asymptotically approaching D. This con-
vergence of signal bounds at high frequencies reflects a fundamental 
characteristic of the system’s temporal signal processing capability.

M2 exhibits sophisticated signal processing behaviour that tran-
scends conventional binary switching mechanisms (Fig. 2e). Although 

our initial conceptual framework suggested a sharp threshold (Fig. 1b), 
the implemented biological system reveals a more nuanced response 
landscape. Rather than enforcing an abrupt transition at a fixed thresh-
old value, M2 creates a continuous activation profile in which the 
promoter activity undergoes a gradual transition between inactive 
and active states. This analogue processing capability emerges from 
the cooperative binding dynamics between cAMP and the Vfr transcrip-
tion factor, with the activation threshold manifesting as a responsive 
range rather than a discrete point (Extended Data Fig. 1). The system’s 
filtering characteristics can be precisely tuned through transcription 
factor abundance (λ), where higher λ values systematically shift the 
activation profile towards lower cAMP concentrations. This tunable 
analogue filtering mechanism not only provides more sophisticated 
control over frequency response characteristics but also better reflects 
the inherent complexity of biological signal processing.

The integration of M1 and M2 dynamics produces distinct 
frequency-dependent behaviours in the circuit output. In the low-pass 
configuration (Fig. 2f), increasing frequency progressively attenu-
ates the expression level at fixed duty cycles. Conversely, high-pass 
configurations (Fig. 2f) show enhanced expression at higher frequen-
cies, demonstrating the circuit’s ability to selectively respond to dif-
ferent frequency ranges. This frequency selectivity emerges from the 
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nonlinear interaction between the wave converter’s signal processing 
and the thresholding filter’s activation dynamics.

To assess the validity of our timescale separation assumption, 
we compared normalized output predictions from both CRN simula-
tions and analytical solutions across the entire accessible parameter 
space (Fig. 2g). The exceptional correlation (R2 = 0.992) between these 
independent approaches confirms that our analytical decomposition 
successfully captures the essential dynamics of the system. This agree-
ment is particularly important because the CRN simulations implement 
all microscopic molecular interactions without any predetermined 
hierarchical organization, yet produce results that align precisely with 
our analytical predictions derived from modular timescale separation. 
This validation spans multiple orders of magnitude in key parameters, 
confirming that the simplified analytical model accurately represents 
the fundamental physics governing frequency-to-amplitude conver-
sion in the complete reaction network.

These results validate our theoretical framework across multi-
ple scales of analysis—from microscopic reaction kinetics to macro-
scopic system behaviours. By identifying the critical dimensionless 
parameters and phase boundaries that dictate system behaviour, 
this framework not only advances our fundamental understanding of 
biological frequency processing but also provides quantitative design 
principles for engineering synthetic circuits with programmable fre-
quency response characteristics.

Specifically, our analysis reveals that the dimensionless threshold 
parameter s∗ = 1/√3α2(1 + λ)  emerges as the critical determinant of 
filtering behaviour, with its value relative to D establishing whether 
the system exhibits high-pass (s∗ < √D/3 ) or low-pass (s∗ > √D/3 ) 
characteristics. This parameter encapsulates the interplay between λ 
and α, revealing how molecular concentrations directly shape the 
frequency response properties.

The mechanistic principle underlying frequency discrimination 
emerges from the dynamic interaction between time-varying cAMP 
signals and the nonlinear activation threshold of the Vfr-promoter 
system. At high frequencies, cAMP oscillates with reduced ampli-
tude but elevated minimum concentrations, allowing systems with 
low thresholds to maintain persistent activation. Conversely, at low 
frequencies, cAMP reaches higher peak concentrations but drops to 
lower minima, favouring systems with high thresholds. This physical 
mechanism establishes a direct link between molecular kinetics and 
frequency-dependent gene expression, a principle probably used by 
several natural second messenger signalling networks.

Automated measurement platform for 
quantifying frequency-dependent dynamics in 
cellular signal processing
Our synthetic biology implementation translates the theoretical FAC 
architecture into a precisely engineered genetic circuit in P. aeruginosa, 
enabling the precise control of gene expression through both molecular 
and operational parameters (Extended Data Table 3 and Supplementary 
Note 9). M1 is realized through the optogenetically controlled adenylyl 
cyclase bPAC and the phosphodiesterase CpdA, which together regulate 
intracellular cAMP dynamics. Light intensity directly controls bPAC acti-
vation, determining the cAMP synthesis rate k, whereas CpdA expres-
sion levels set the degradation rate γ. M2 is implemented through the 
Vfr transcription factor, which forms complexes with cAMP to activate 
the target promoters. Vfr concentration directly corresponds to the 
parameter λ in our model, whereas Vfr–cAMP binding affinity corre-
sponds to parameter K2. M3 consists of the sfGFP fluorescent reporter 
under control of the Vfr-responsive promoter, providing a quantitative 
readout of the circuit’s frequency response. At the molecular level, the 
circuit can be tuned through CpdA and Vfr expression levels, which 
affect parameters α and λ, whereas at the operational level, it responds 
to experimental parameters including light intensity (I) and duty cycle 
(D). These complementary control mechanisms collectively shape the 

circuit’s output (Y), providing multiple degrees of freedom for engineer-
ing the desired frequency responses. To systematically explore this 
multidimensional parameter space, we constructed 65 distinct FDCC 
variants with different combinations of CpdA and Vfr expression levels 
(Supplementary Notes 10 and 11 and Supplementary Fig. 3).

To address these challenges, we developed a high-throughput 
automated experimental platform capable of maintaining stable bacte-
rial states through continuous culture (Fig. 3a). The platform integrates 
four core functional modules: (1) an optoplate for programmable light 
signal control, (2) bacterial culture agitation, (3) automated solution 
handling for continuous dilution and (4) fluorescence measurement. 
This integrated system enables parallel testing of multiple 96 experi-
mental samples and providing independent control of light signal 
parameters for individual wells (Supplementary Fig. 4). The continuous 
dilution culture maintains stable growth rates, preventing protein con-
centration fluctuations from growth phase transitions, whereas auto-
mated fluorescence measurements enable systematic data collection.

The automated workflow follows a rigorously controlled pro-
cess (Fig. 3b). Under constant temperature and agitation conditions, 
bacterial strains receive independently programmed light signals via 
the optoplate control unit (OPCU) device. Hourly sampling cycles 
remove 50 μl for fluorescence measurement, whereas the remaining 
culture undergoes rapid dilution (4 min) with a fresh medium. This 
precise temporal control ensures cultivation continuity and minimizes 
perturbations to bacterial growth states (Supplementary Note 12 and 
Supplementary Figs. 4 and 5).

Platform validation demonstrated exceptional stability and repro-
ducibility. The system maintained optical density (OD) at 0.09 ± 0.01 
across 96 parallel samples over extended periods (>12 h; Fig. 3c). Even 
with varying initial conditions, continuous dilution established consist-
ent OD values within ~4 h. Cross-batch reproducibility analysis revealed 
excellent consistency in fluorescence measurements, with coefficients 
of variation below 10% (Fig. 3d).

To systematically characterize the circuit behaviour, we first 
mapped the relationship between key parameters (γ and s*) and fre-
quency response characteristics (Fig. 3e). Parameter estimation for 
γ and s* was performed using two complementary fitting approaches 
(Supplementary Note 14). Our systematic approach involved engineer-
ing 65 distinct FDCC variants by varying promoters and RBS sequences 
controlling CpdA and Vfr expressions, followed by staged parameter 
fitting with physiological constraints (Extended Data Fig. 2 and Sup-
plementary Notes 13 and 14). Since γ depends on CpdA and Vfr concen-
trations and λ scales directly with the Vfr concentration, we obtained 
strains with varying γ, α and λ values (Supplementary Table 5). The 
resulting phase diagram reveals distinct regions corresponding to 
different frequency-to-amplitude conversion behaviours, with YHF – YLF 
serving as a metric for frequency discrimination capability. For this 
metric, YLF was evaluated at frequencies corresponding to bacterial 
division cycles (approximately 1/2,400 s−1), ensuring stable cellular 
states during measurement periods. The high-frequency response 
(YHF) was assessed at 1/100 s−1, establishing an experimentally accessible 
range that respects cellular physiological constraints. We strategically 
selected 23 representative strains from our engineered FDCC variants, 
shown as circular markers in the phase diagram, to systematically sam-
ple different regions of the theoretical parameter space. These strains 
were specifically chosen to validate our theoretical predictions across 
diverse operating regimes and maintain experimental feasibility within 
biological constraints.

Comprehensive frequency response characterization using our 
automated platform revealed remarkable agreement between theo-
retical predictions and experimental measurements (Supplementary 
Note 14.4). Figure 3f presents the frequency response curves for all 
strains at a fixed D = 0.3, demonstrating consistent alignment across 
diverse parameter combinations and validating our theoretical 
framework’s predictive power. The parameter fitting procedures 
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yielded biologically plausible protein concentrations within the 
0.1–5-μM range, with fitted values showing clear correlation with 
genetic design choices (Extended Data Tables 1 and 2 and Supple-
mentary Note 14.4).

Our theoretical analysis (Fig. 2b) identified D as a crucial param-
eter in modulating frequency responses. We validated this prediction 
through two complementary experimental approaches. First, we char-
acterized several FDCC variants at D = 0.1 (Fig. 3g), demonstrating that 
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circuits maintain their frequency discrimination capabilities even at 
low duty cycles and exhibiting systematic variations in response to 
amplitude and frequency sensitivities based on molecular param-
eters. Second, detailed characterization of a representative strain 
(FAC03C17V17) across multiple duty cycles (Fig. 3h) revealed how 
duty cycle modulation systematically alters both response magni-
tude and frequency sensitivity and maintains fundamental high-pass 
characteristics. Cross-validation using parameters fitted from the 
D = 0.1 condition successfully predicted responses at other duty cycles 
without additional parameter adjustment, demonstrating the model’s 
predictive validity.

A particularly crucial finding emerged from the strain 
FAC03C22V34, which demonstrated controlled switching between 
high-pass and low-pass FAC behaviours through the precise manipula-
tion of light intensity and duty cycle (Fig. 3i). Light intensity provides 
direct experimental control over the threshold parameter s* through 
the modulation of the activated bPAC concentration, where higher 
light intensity increases [bPAC*], thereby raising α and consequently 
lowering s* according to s* ∝ 1/α (Extended Data Table 3). This dynamic 
control over the frequency response characteristics revealed the cir-
cuit’s programmable nature. By mapping these behavioural transitions 
onto the theoretical phase diagram (Fig. 3j), where solid circular points 
and connecting arrows track parameter-driven changes, we provided 
direct experimental validation of the predicted phase boundaries 
between distinct operating modes.

To assess the validity of our theoretical framework, we compared 
experimental measurements with theoretical outputs (Y) derived 
from fitting our mathematical model to each individual experimental 
condition across the entire accessible parameter space (Fig. 3k). Each 
data point represents a different combination of strain, frequency, 
duty cycle and light intensity, where theoretical outputs were calcu-
lated using parameters fitted to that specific condition. The excep-
tional correlation (R2 = 0.986) between experimental measurements 
and fitted theoretical outputs spans multiple orders of magnitude in 
key parameters, demonstrating that our mathematical framework 
accurately captures the system behaviour across diverse strains and 
operational conditions.

These detailed characterizations demonstrate that the FDCC  
architecture implements a well-defined physical system for frequency- 
dependent information processing in living cells. The quantitative 
correspondence between theory and experiment across diverse condi-
tions establishes both feasibility and fundamental limits of biological 
frequency demodulation and provides precise design principles for 
engineering gene regulatory systems with programmable frequency 
response characteristics. This physics-based approach to cellular 
frequency demodulation opens new possibilities for implementing 
sophisticated computational functions in synthetic biological systems.

Information entropy enhancement through FM
Second messenger systems like cAMP networks naturally coordinate 
the expression of multiple downstream genes15,38,39, functioning as 
information processing hubs that translate environmental signals 
into coordinated cellular responses. After establishing the physical 
principles governing frequency-to-amplitude conversion in individual 
circuits, we sought to explore the fundamental mechanisms by which 
FM could enhance information transmission across biological signal-
ling networks.

In biological systems, second messengers typically regulate mul-
tiple target genes with diverse response thresholds. FM introduces an 
orthogonal encoding dimension that potentially expands the acces-
sible state space beyond traditional amplitude-based control. We 
hypothesized that when multiple genes respond to a single second 
messenger signal with differing sensitivities, frequency-based control 
could unlock new regulatory possibilities by accessing regions of state 
space fundamentally inaccessible through AM alone.

To quantitatively test this hypothesis, we analysed a two- 
component system in which genes exhibit distinct sensitivities to Vfr– 
cAMP regulation. These differences are characterized by dissociation 
constants K2A and K2B, along with their corresponding dimensionless 
parameters λA and λB (equation (6)). Here λA and λB represent the relative 
abundances of the transcription complexes associated with promoters 
A and B, respectively. This configuration creates a two-dimensional 
state space (YA, YB) with normalized protein expression levels (equation 
(10)). Although conventional control relies on I and D, our FDCC archi-
tecture introduces f as an additional control dimension, enabling the 
exploration of how information entropy scales with increasing degrees 
of freedom (Fig. 4a).

To quantitatively analyse state-space accessibility, we introduced 
a discretization parameter ϵ = 0.1, which functions as a measure of 
resolution in state-space partitioning. Similar to how the minimum 
number of spheres N(R) needed to cover a point set scales inversely 
with sphere radius R as N(R) ≈ 1/Rd (ref. 40), the total number of theo-
retically distinguishable states scales inversely with our discretization 
parameter ϵ. This parameter divides each dimension of normalized 
expression (Y) into 1/ϵ equal intervals. In a two-promoter system, 
our choice of ϵ creates a 10 × 10 grid with 100 theoretically possible 
distinct expression states (Fig. 4b). Although this discretization pro-
vides a simplified metric for quantifying state-space expansion, it is 
important to note that the actual resolution of distinguishable gene 
expression states is fundamentally limited by intrinsic cellular noise 
(Extended Data Fig. 3a and Supplementary Note 15.4). Our choice of 
ϵ = 0.1 is biologically justified by stochastic analysis, showing that 
reliable state discrimination requires the separation of at least twice 
the signal standard deviation (~0.08–0.09), with scaling relationships 
remaining robust across different ϵ values (Extended Data Fig. 3b 
and Supplementary Note 15.5). These quantitative noise studies vali-
date our discretization approach and confirm that the observed scal-
ing relationships reflect genuine biological capabilities rather than 
computational artefacts. Therefore, this grid-based quantification 
provides a well-grounded measure to demonstrate relative changes 
in state-space accessibility34,41.

To rigorously quantify the information content of accessible 
states, we applied Shannon’s information theory framework42. Assum-
ing a uniform probability distribution across accessible states (which 
maximizes entropy for a given number of states), we calculated the 
information entropy H = –∑pilog2[pi], where pi represents the prob-
ability of the system occupying state pi. Under pure AM, we observed 
only 19 distinct states, represented by the blue curve and correspond-
ing grid cells in Fig. 4b, show an information entropy of HAM ≈ 4.25 bits. 
However, introducing FM revealed a remarkable expansion of acces-
sible states. By simultaneously tuning both D and f as frequency was 
varied from 1 to 1 × 10−3 (non-dimensionalized units), the system 
accessed additional regions of state space (red grid cells), expanding 
the total accessible state space to 38 distinct states and increasing the 
information entropy to HFM ≈ 5.25 bits.

Our analysis revealed that the accessible state space expands 
nonlinearly with the increasing number of regulated genes (Extended 
Data Fig. 3b and Supplementary Note 15.3). In three-gene systems, 
maintaining the same discretization parameter and exploring the 
expanded state space (YA, YB, YC), we observed an increase from 
HAM3 = log2[27] ≈ 4.75 bits  under amplitude-only modulation to 
HFM3 = log2[95] ≈ 6.57 bits  when FM is introduced as an additional 
control dimension, representing a gain of approximately 1.82 bits 
(Fig. 4c). This higher-dimensional analysis revealed a critical insight: 
amplitude-only control and combined frequency-to-amplitude control 
exhibit fundamentally different scaling behaviours as the number of 
regulated genes increases.

Under the specific diverse response thresholds of multiple target 
genes, a mathematical analysis of these scaling relationships demon-
strated that information entropy under AM scales as HAM ∝ 0.8log2[n], 
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where n represents the number of regulated genes. By contrast, when 
FM is introduced as an additional control dimension, it enables a more 
rapid information entropy scaling of HFM ∝ 2.0log2[n] (Fig. 4d), where 
HFM represents the total accessible state space achieved through coor-
dinated regulation of α, D and f. This differential scaling reveals that 
FM’s information advantage becomes increasingly pronounced with 
larger gene networks, as the coordinated temporal dynamics expand 
the regulatory capabilities beyond what amplitude control alone can 
achieve. However, this enhancement will ultimately be bounded by 
physical transmission limits inherent to cellular systems, including 
molecular noise floors, finite protein concentrations and the temporal 
resolution of cellular machinery.

To experimentally validate these theoretical predictions, we 
conducted a high-throughput screening of 260 promoter candidates 
to identify sets with appropriate λ values (Supplementary Fig. 6 and 
Supplementary Notes 16 and 17). We constructed both two-gene 
systems expressing sfGFP and CyOFP (Fig. 4e) and three-gene sys-
tems expressing sfGFP, CyOFP and mScarlet (Fig. 4f ). Using the 
same colour mapping scheme as in our theoretical analysis, the 
experimental results demonstrated clear state-space expansion 

through FM in both two- and three-dimensional cases, confirming 
our theoretical predictions.

These findings provide fundamental insights into both natural 
and synthetic biological systems. In natural second messenger net-
works, the more favourable scaling of frequency-based information 
transmission may explain the prevalence of oscillatory signalling 
observed across diverse cellular contexts. For synthetic biology, these 
quantitative scaling laws establish design principles for engineering 
sophisticated circuit architectures that exploit FM to achieve enhanced 
control over multiple coordinated outputs. The demonstrated expan-
sion in information entropy represents a physically efficient strategy 
for increasing the computational capabilities of cellular systems. Our 
analysis also reveals fundamental frequency resolution limits of the 
FAC system, including maximum resolvable frequencies (0.025 s−1) 
determined by cAMP degradation kinetics and minimum distinguish-
able frequency differences (25% relative change) in the most sensitive 
operational regions. These resolution characteristics align well with 
biologically relevant timescales, enabling discrimination between 
rapid stress responses and sustained metabolic adaptations as well as 
operating within biophysical constraints (Supplementary Note 8.2).
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validation. Normalized expression (Y) from sfGFP and CyOFP measurements 
demonstrating entropy expansion. The error bars are s.d. of Y mean for 
promoters nanAp and nupGp; N = 4 independent biological replicates. Colour 
scheme matches the theoretical predictions in b. f, Three-promoter system 
validation using sfGFP, CyOFP and mScarlet measurements, confirming the 
theoretical predictions shown in c.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-025-03030-4

Summary and perspective
In living systems, information processing extends far beyond sim-
ple ON/OFF switching to encompass rich temporal dynamics. Our 
work reveals a fundamental physical mechanism through which 
bacterial networks decode frequency-modulated information via a 
three-module FAC architecture. This system—comprising wave con-
verter, thresholding filter and integrator modules with distinct time-
scale hierarchies—transforms oscillatory cAMP signals into precise 
gene expression patterns. By developing FDCCs with programmable 
frequency responses, we establish a rigorous theoretical and experi-
mental framework that bridges microscopic molecular dynamics with 
macroscopic information processing. Our analytical model, validated 
through systematic experimentation on an automated high-throughput 
platform, reveals that introducing FM as an additional control dimen-
sion enables information entropy to scale as HFM ∝ 2.0log2[n] compared 
with amplitude-only control’s HAM ∝ 0.8log2[n], where n represents the 
number of regulated genes. This differential scaling provides approxi-
mately two additional bits of information in three-gene systems, offer-
ing a physical explanation for the prevalence of oscillatory signalling 
across biological contexts and establishing design principles for engi-
neering sophisticated synthetic circuits with enhanced computational 
capabilities.

Our information-theoretic approach complements established 
signal transmission studies that focus on distinguishing input con-
centrations under noise constraints, typically achieving limited 
information transmission through individual pathways43. Rather than 
improving signal discrimination, FM expands regulatory capabilities 
by enabling the orchestration of complex, coordinated responses 
across multiple target genes through orthogonal temporal control 
dimensions. Although our noise analysis (Extended Data Fig. 1 and Sup-
plementary Notes 8 and 15) confirms that intrinsic cellular fluctuations 
establish fundamental resolution limits, the enhanced entropy scaling 
reflects genuine capacity for sophisticated pattern generation that 
extends beyond conventional amplitude-based regulation.

The emergence of dynamic signal processing in gene circuit design 
marks an important advancement in cellular information process-
ing3. The field of synthetic biology has evolved from constructing 
basic regulatory elements to developing complex circuits including 
toggle switch16, oscillators17,18 and logic gates19,20, primarily relying on 
amplitude-based regulation44,45. However, this amplitude-focused 
approach captures only part of the rich dynamics observed in natural 
systems. Recent efforts to incorporate temporal control have led to the 
development of PWM22,23,46, where information is encoded through vari-
ations in signal duration. Although PWM represents progress towards 
dynamic control, it ultimately remains an extension of amplitude-based 
regulation, as it relies on modulating time-averaged signal intensity. By 
contrast, pure FM, where duty cycle remains constant, establishes an 
independent dimension for information encoding47. This fundamental 
distinction between PWM and FM highlights the untapped potential 
of frequency-based control in expanding the capabilities of synthetic 
gene circuits.

Our approach integrates control theory principles with syn-
thetic biology to create a robust theoretical framework. The FAC 
architecture demonstrates how biological systems can transform 
frequency-encoded signals into amplitude-modulated gene expres-
sion patterns, analogous to engineered FM systems. This framework, 
combining CRN36 simulations with theoretical analysis34, provides a 
multiscale understanding from molecular interactions to system-level 
behaviours. The successful experimental validation through our auto-
mated platform demonstrates the feasibility of implementing sophis-
ticated control strategies in living cells.

The development of our automated experimental platform rep-
resents a pivotal advancement in synthetic biology’s design–build–
test–learn cycle48. Traditional characterization methods have been 
insufficient for studying frequency-dependent responses, as they lack 

the precision and throughput needed for the systematic analysis of 
dynamic behaviours49–51. Our platform addresses these limitations by 
enabling the parallel testing of multiple strains and maintaining precise 
control over both cellular states and dynamic inputs. This technical 
advance, combined with recent developments in automated screen-
ing systems49, establishes a new experimental paradigm for studying 
frequency-modulated gene circuits. The integration of theory and 
automated experimentation not only validates our theoretical pre-
dictions but also provides a generalizable approach for investigating 
complex dynamic behaviours in biological systems.

Our experimental findings, coupled with observations from 
natural systems, provide compelling evidence for the significance of 
frequency-modulated signal processing in cellular information pro-
cessing. We demonstrated that FM increases the information entropy 
of signalling pathways by enabling the global regulation of multiple 
target genes with different activation thresholds or affinities. This was 
particularly evident in our multigene system experiments, where FM 
notably increased the information entropy of gene expression patterns, 
achieving up to two bits of additional information content in three-gene 
systems. This increased information processing capability mirrors 
natural systems, where FM facilitates the proportional co-regulation of 
diverse target genes, as observed in the pulsatile behaviour of transcrip-
tion factors such as p53 (ref. 52), Ascl1 (ref. 53), NF-κB (ref. 54), Msn2 
(ref. 10) and the SOS stress response system12. Notably, FM provides 
a mechanism linking individual protein dynamics to large regulon 
expression, suggesting its role in orchestrating genome-scale expres-
sion patterns. Given its observed functions in protein and metabolic 
networks, as well as transcriptional regulation, we anticipate that 
frequency-modulated regulation may represent a general principle by 
which cells encode, process and respond to dynamic environmental 
signals with expanded information content.

From a synthetic biology perspective, frequency-modulated cir-
cuits offer distinct advantages through their relatively simple genetic 
architecture55. The FAC system requires a modest set of genetic ele-
ments compared with traditional synthetic circuits that often demand 
multiple regulatory components and precise expression balancing. 
This architectural simplicity, combined with sophisticated control 
capabilities, suggests that integrating frequency-modulated regula-
tion into synthetic circuits is not only feasible but potentially trans-
formative. Moreover, incorporating dynamic frequency-based control 
into engineered circuits presents unique opportunities to effectively 
address and exploit inherent cellular characteristics, such as noise man-
agement and shared regulatory resource allocation56. This approach 
to circuit design opens new possibilities for engineering cellular 
behaviours in ways previously unexplored in traditional engineering 
disciplines.

Looking forward, this understanding of frequency-based signal 
processing opens new avenues in both fundamental research and 
practical applications9. In metabolic engineering, the coordination 
of multiple genes through FM could enable sophisticated pathway 
control. The expanded state space accessible through FM provides 
new tools for fine tuning cellular behaviour and controlling complex 
phenotypes. Furthermore, the connection between single-protein 
dynamics and genome-wide expression patterns may offer insights 
into coordinated cellular responses across different organizational 
scales, potentially revealing new principles for both synthetic biology 
design and natural regulatory networks.

Several important challenges and opportunities remain for 
future research. These include developing more sophisticated 
frequency-responsive elements, improving methods for temporal 
control of cellular systems and better understanding of noise charac-
teristics in frequency-modulated circuits. Additionally, exploring FM in 
diverse cellular contexts and organisms could reveal new applications 
and design principles, further expanding the potential of this regula-
tory approach in synthetic biology.
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Methods
Computational model
In this study, we use deterministic mass-action CRN models to simulate 
the system. The genetic circuit FDCC, comprising ten distinct species 
and nine chemical reactions (Supplementary Table 1, r1–r9), is at the 
core of these models. Supplementary Table 2 shows a diagram that pro-
vides a more realistic representation of the CRN within a bacterium. The 
reaction parameters used in this model, drawn from existing literature 
or our experimental data, are detailed in Supplementary Table 3. In this 
model, we simplify the processes of transcription and translation of 
CpdA and Vfr, treating them as constants determined by the bacterial 
strain. The simulation model further streamlines the transcription and 
translation of proteins into a single step, and introduces a deactivation 
stage for bPAC to incorporate the non-instantaneous deactivation of 
bPAC post-light exposure.

Parameter estimation and fitting procedures
Using an automated detection platform, we systematically measured 
fluorescence outputs (FT) under fixed duty cycle conditions (D = 0.3) 
across various oscillation periods T (100 s, 300 s, 500 s, 900 s, 1,800 s 
and 2,400 s), with dark controls (FDark) and continuous illumination 
(FLight) serving as reference measurements. Fluorescence quantification 
used two normalization approaches: for samples containing internal 
controls, we used the ratio of reporter gene sfGFP fluorescence to 
internal standard CyOFP fluorescence; for samples without internal 
standards, we applied OD-normalized reporter fluorescence intensity. 
Normalized response values Y = (FT – FDark)/(FLight – FDark) were calculated 
to generate frequency response curves for each engineered strain. 
We initially constructed a strain library with varying expression lev-
els of CpdA and Vfr. Preliminary characterization revealed that high 
CpdA expression led to weak output signals and attenuated frequency 
response under continuous illumination. To optimize the dynamic 
performance, we maintained the native promoter upstream of bPAC 
in the frequency-responsive strains identified during initial screening 
and finely tuned the expression levels of CpdA and Vfr.

Mathematical modelling revealed that under constant D, the 
response Y exhibits functional dependence on oscillation period T, 
hydrolysis rate γ, and dimensionless parameters α and λ. We used two 
distinct fitting approaches to determine the system parameters from 
the experimental frequency response data, as detailed in the parameter 
fitting flowchart (Extended Data Fig. 2).

Fit1 method (multiparameter joint optimization): by fitting the 
experimentally obtained Y–T curves with γ, α and λ as free parameters 
and incorporating the parameter–protein concentration relationships 
detailed in Supplementary Note 9, we derived the concentration values 
of [CpdA]0, [Vfr]0 and [bPAC*]. Given the relationships α = k0[bPAC*]/
(γK1) and λ = [Vfr]0/K2, where γ depends on the CpdA and Vfr concentra-

tions through γ = γ0[CpdA]0/K0

1+[CpdA]0/K0
 (γ0 is the hydrolysis rate mediated by CpdA 

and K0 is the Michaelis constant), we performed curve fitting using 
equation (6) from the main text. The characteristic frequency param-
eter s* was determined through the relation s∗ = 1/√3α2(1 + λ).

Fit2 method (composite parameter approach): alternatively, using 
the more detailed equations (9) and (10) from the main text, we can 
directly extract the parameters γ and s* by fitting the Y–T curves. This 
method consolidates α and λ into the composite parameter s*, enabling 
more robust parameter determination through reduced optimization 
complexity.

Our systematic approach involved engineering 65 distinct FDCC 
variants by systematically varying promoters and RBS sequences 
controlling CpdA and Vfr expressions. Since λ scales directly with Vfr 
concentration (λ = [Vfr]0/K2), we obtained strains with varying γ, α 
and λ values. Through systematic characterization of the engineered 
strains’ frequency response profiles, we successfully identified strains 
exhibiting measurable high-frequency responses.

All the fitting procedures incorporated physiologically realis-
tic constraints based on established protein concentration ranges: 
γ ∈ [0.001, 0.055] s−1 (cAMP hydrolysis rate), λ ∈ [10, 500] (relative tran-
scription factor abundance) and s* ∈ [0.005, 1] (normalized threshold), 
corresponding to intracellular protein concentrations of 0.1–5 μM as 
validated through fluorescence microscopy calibration. The detailed 
data fitting methodology, including all relevant parameters used in 
Fig. 3, is provided in Extended Data Fig. 2 and Supplementary Note 14.

Cultivation of bacterial strains
In this study, genetically engineered P. aeruginosa strains were cultured 
at 37 °C. Unless otherwise specified, biological replicates in this study 
refer to the separate cultivation of individual clones. Strains carrying 
the bPAC fragment were protected from light throughout the cultiva-
tion process. The detailed cultivation protocol involved streaking 
strains stored at –80 °C on LB agar plates shielded from light with foil. 
After overnight incubation for resuscitation, single colonies were 
selected and transferred to the FAB culture medium57 containing 30 mM 
of glutamate and 1 μM of FeCl3. Cultures were agitated at 220 rpm 
until OD600 reached approximately 0.5. Antibiotic concentrations 
used during cultivation were 30 μg ml−1 of gentamicin, 100 μg ml−1 of 
tetracycline and 150 μg ml−1 of carbenicillin.

Construction of bacterial strains
All plasmids, strains and promoter sequences are listed in Supplemen-
tary Tables 6–8. Unless otherwise specified, the knockout of all genes 
and the seamless insertion of gene fragments into the genome in this 
study were accomplished using CRISPR technology. The construction 
of relevant plasmids was carried out using Gibson assembly. Supple-
mentary Notes 10 and 11 provide additional details on the construction 
strategies for more bacterial strains and plasmids. The chassis strain 
FAC01:PAO1-ΔpslBCDΔpelAΔexoSΔexoTΔcyaAΔcyaB was constructed 
by the successive knockout of six gene clusters. The experimental 
procedure was refined based on existing literature58, with the deletion 
of the cyaA gene as an example. The specific experimental procedure 
is as follows. (1) Construct a plasmid PCRISPR-cyaA containing the 
gRNA and homologous recombination segment. (2) Transform the 
plasmid PCASPA containing Cas9 into the PAO1 strain, electroporate 
the plasmid PCRISPR-cyaA, and plate on a double-resistant plate con-
taining tetracycline and carbenicillin. (3) PCR confirms the successful 
knockout of the target gene cyaA in the resulting colonies. Pick colonies 
and culture overnight on LB agar plates without sodium chloride at 
15% (wt) surcose to loss plasmids. Sequence verification will confirm 
the PAO1-ΔcyaA strain. Subsequent knockouts of genes like pslBCD, 
pelA, exoS, exoT and cyaB can be performed in a similar manner in 
the PAO1-ΔcyaA strain. Subsequently, through the integration of the 
PA1/O4/O3-bPAC fragment into the FAC01 genome utilizing the CTX 
transposon insertion system, the engineered strain FAC03 was suc-
cessfully generated.

In the wild-type PAO1 strain, the expression of the vfr and cpdA 
genes is regulated by cAMP. To eliminate this specific influence, we used 
CRISPR technology to seamlessly replace the promoters of these genes 
with constitutive promoters in the FAC03 bacterial genome (Supple-
mentary Note 11). The selectable RBS options encompass B0034-RBS0
46-RBS004-RBS017-RBS021 (ref. 59), whereas the available promoters 
include J23106-J23115-J23110-J23100-J23102. Through diverse combina-
tions, a total of 65 strains were systematically engineered.

To assess the intracellular expression levels of cAMP, we con-
structed a plasmid designated as Plac-sfGFP-T0T1-J23102-CyOFP-pJN1
05 and subsequently electroporated it into various chassis cells. Unless 
otherwise specified, all strains referenced in the main figures contain 
this plasmid. The constitutively expressed CyOFP fluorescent protein 
serves as an internal standard for normalizing bacterial growth differ-
ences. The change in intracellular cAMP concentration is calculated by 
comparing the ratio of sfGFP to CyOFP.
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Automated experiment
The automation island depicted in Fig. 3a serves as a consolidated area 
in which automation instruments, equipment and control modules 
catering to specific experimental functions are harmoniously inte-
grated. Components include robotic arms, microplate reader (Tecan, 
Spark), incubator (LiCONiC, STX44-ICBT), liquid handler (Tecan, Flu-
ent 780), plate hotel (LiCONiC, LPX220), microplate washer (Tecan, 
HydroFlex) and a self-developed steering platform. The intelligent 
control system comprises various modules such as process editing, 
task scheduling, data analysis, equipment management and so on. 
For instance, the task scheduling system can precisely coordinate 
equipment operations to achieve automated workflow, and the data 
analysis system can collect and analyse experimental data in real time.

Supplementary Video 1 presents a comprehensive demonstration 
of an automated experimental workflow. The automated platform 
allows for the concurrent parallel execution of multiple tasks. Using our 
self-developed light control device OPCU, we can program the input 
of light signal intensity I, period T and duty cycle D. Subsequently, we 
dispense the bacterial solution into 96-well black plates (LABSELECT, 
11514), install the plate into the OPCU and place it in the WareHotels of 
the automation island. Then, we start the experiment to achieve the 
continuous dilution of bacteria and data collection. The procedure and 
script for the automated experiment are detailed in Supplementary 
Fig. 4 and Supplementary Note 12.

Bacterial image acquisition
After the completion of the automated experiment, following the 
method previously described, the rapid high-throughput acquisition of 
microscopic images of a single bacterium in a 96-well plate is conducted. 
The experimental steps are outlined as follows. First, we prepare a 1% 
agar plate of FAB medium in a 96-well format, with the composition of 
the medium identical to that used in the automated experiment. Next, 
we pipette 6 μl of the bacterial suspension onto the corresponding wells 
of the agar plate. Finally, we compress the bacterial suspension to a thick-
ness of 0.17 mm on a specialized microscope slide. Each well corresponds 
to a different bacterial strain, and the OPCU is used to set independent 
illumination conditions for each well. We use a fluorescence microscope 
(IX-71, Olympus) equipped with a ×100 oil objective to capture four fields 
of view for each well, with approximately 500 bacteria per field, acquiring 
fluorescent images. Fluorescent images of sfGFP, CyOFP and mScarlet 
were acquired by two Zyla 4.2 scientific complementary metal–oxide–
semiconductor cameras. The fluorescence of sfGFP, CyOFP and mScarlet 
was excited using a solid-state light source (Lumencor SPECTRA X).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the 
Article and its Supplementary Information. Source data are provided 
with this paper.
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Extended Data Fig. 1 | The Chemical Reaction Network (CRN) model and 
simulation results corresponding to the FDCC. a, Molecular implementation 
of the Frequency-Decoding cAMP Circuit (FDCC). Optogenetic circuit design 
incorporating light-activated bPAC and CpdA phosphodiesterase (M1), 
cAMP-dependent Vfr transcription factor binding (M2), and protein expression 
machinery (M3). b, The simplified CRN model utilized for simulation. The 
ellipses represent species in the FDCC, while the circles represent reactions. 
The orange, pink, and purple circles correspond to the kinetic reactions within 

modules Wave Converter (M1), Thresholding Filter (M2), and Integrator (M3), 
respectively. c, Input signals to the simulation: a high-frequency input of 1/100 s−1 
and a low-frequency input of 1/2400 s−1. d, Simulation output from the high-pass 
configuration after reaching equilibrium. Parameter settings: [bPAC*] = 0.1 μM 
(equivalent to 50 molecules under the conversion 2 nM = 1 molecule), [CpdA]0 
= 0.15 μM, [Vfr]0 = 0.1 μM, and [Plac]0 = 40 nM. e, Simulation output from the 
low-pass configuration after reaching equilibrium. Parameter settings: 
[bPAC*] = 5.0 μM, [CpdA]0 = 2.0 μM, [Vfr]0 = 2.0 μM, and [Plac]0 = 40 nM.
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Extended Data Fig. 2 | Data processing and formula fitting workflow diagram. 
Systematic fitting process for the experimental strains shown in Fig. 3f. The 
engineered strains constructed with fixed initial bPAC concentrations at three 
different Vfr expression levels, with fine-tuned CpdA expression. Experimental 
data collection was performed using an automated platform, recording the 
fluorescence intensity (Y) of output proteins at different input frequencies, 
which were then normalized to generate frequency-response curves (Y vs T). 
The data analysis adopted a hierarchical fitting strategy: First, strains were 
classified into three groups based on Vfr expression levels, assuming that 
strains within the same group shared identical λ and [bAPC*]. Global fitting 

(Fit1) was performed to obtain strain-specific γ values and shared parameters 
(Step-1). Subsequently, precise fitting optimization (Step-2) was conducted by 
constraining the range of γ values. Based on the correlation model established 
in Supplementary Note 8.4, the fitted parameters were converted to protein 
concentrations (Step-3). Using the Fit2 model (Step-4), or by calculation based 
on the α and λ parameters obtained from Fit1 (Step-5) to determain parameter 
s*. It should be noted that the fitting methods for other independent strain 
datasets followed essentially the same procedure with only minor differences, as 
detailed in Supplementary Note 14.
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Extended Data Fig. 3 | Quantitative analysis of noise characteristics and 
information capacity in optogenetic gene circuits. a, Obtained through 
MATLAB SimBiology stochastic simulations. For the continuous illumination 
group (blue), varying input light intensities (corresponding to initial bPAC 
concentrations in the CRN) were applied. The steady-state means of both protein 
expressions at maximum light intensity served as normalization standards. Data 
are presented as mean values with error bars representing standard deviation 
(s.d.) obtained from stochastic simulations. The noise values (error-bar) were 
obtained from normal distribution fits of steady-state data distributions, 
normalized by their respective protein expression means. For duty cycle data, 

light intensity was fixed at maximum (initial bPAC concentration in CRN set 
to maximum). Connected data points share identical duty cycles, with three 
groups having D = 0.05, 0.1, and 0.2 respectively, while periods were varied 
(T = 100, 200, 400, 800, 1600, 2400, 3600, 5400 seconds). b, For different 
numbers of regulatory genes (n), we calculated the number of states in amplitude 
modulation only (AM) mode and in combined amplitude and frequency 
modulation (FM) mode by sampling parameters α, λ, D, and f, with λ taken from a 
geometric sequence with a common ratio of 2 starting at 50 (that is, λ = 50, 100, 
200, 400…). The information entropy H was then computed. The curve of H 
versus log2[n] was plotted to determine the slope value.
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Extended Data Table 1 | Definitions of non-dimensional symbols and abbreviations in this study
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Extended Data Table 2 | Definitions of symbols and abbreviations with physical units in this study
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Extended Data Table 3 | The effect of experimental control parameters on the characteristics of FAC
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