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Bacterial second messenger networks transmit environmental information
through both amplitude and frequency modulation strategies. However,

the mechanisms by which cells decode frequency-encoded signals remain
poorly understood. By reconstructing the cyclicadenosine monophosphate
second messenger system in Pseudomonas aeruginosa, we demonstrate
that frequency-to-amplitude signal conversion emerges through three
distinct filtering modules that decode frequency-encoded signals into

gene expression patterns. Our mathematical framework predicts arange

of frequency filtering regimes controlled by a dimensionless threshold
parameter. We validated these using synthetic circuits and an automated
experimental platform. Quantitative analysis reveals that under the given

parameter conditions, frequency modulation expands the accessible state
space more substantially than amplitude modulation alone. The total
number of accessible states scales as the square of the number of regulated
genes for frequency-enhanced control, compared with the power of 0.8 for
amplitude-only control. This results in approximately two additional bits

of information entropy in three-gene systems when using frequency-based
control. Our findings establish the fundamental principles of
frequency-based signal processing in bacterial second messenger networks,
revealing how cells exploit temporal dynamics to regulate multiple genes
and expand accessible state spaces. This provides insights into both cellular

information physics and design principles for synthetic biology.

Information encoding and transmission in physical systems can be
achieved through two fundamental mechanisms: amplitude modula-
tion (AM) and frequency modulation (FM)'. Although the physics of
these mechanisms is well understood in classical signal processing,
theirimplementation in molecular networks presents unique chal-
lenges that probe fundamental questions about how cells decode and
processinformation. The dichotomybetween AM and FM s particularly
striking in cellular networks, where evolution has produced sophisti-
cated regulatory systems that utilize both encoding strategies®, raising

deep questions about the physical principles governing biological
signal decoding.

The physics of cellular information processing emerges from
the interplay between nonlinear dynamics and network topology.
Although natural systems have evolved to exploit both AM and FM®’,
frequency-based regulation appears asarecurring motifacross diverse
cellular contexts—from calcium oscillations’ to hormone secretion
patterns® and transcription factor dynamics® 2. The ubiquity of FM
suggests that it represents a fundamental physical principle rather
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thanaspecialized adaptation. Despiteits prevalence, the mechanisms
enabling cells to decode these frequency-encoded signals remain
poorly understood.

Second messenger systems, including those based on cyclicAMP
(cAMP), represent one of the primary channels through which cells
process and transmit fluctuating signals™. These molecular interme-
diaries translate external stimuliinto internal cellular responses, often
servingas critical nodes ininformation processing networks. In bacte-
rial systems, CAMP acts as a central regulator that coordinates gene
expression in response to environmental changes, making it an ideal
candidate for studying frequency-dependent signal processing'*".

Synthetic biology has achieved remarkable progress in engi-
neering amplitude-modulated gene circuits, from toggle switches to
oscillators and logic gates that perform sophisticated computational
operations'®?, However, creating synthetic systems that can effec-
tively decode frequency-modulated signals has proven substantially
more challenging. Although pulse-width modulation (PWM) offers one
approach for dynamic regulation®?, it fundamentally differs from the
richfrequency-dependent behaviours observed in natural systems®
inwhich informationis encoded purely in transition frequencies and
constant time averages are maintained. This disconnect between natu-
raland engineered systems highlights a critical gap in our understand-
ing of how temporal dynamics are processed in cellular contexts.

Quantitative understanding of frequency-modulated second mes-
senger systems has remained limited due to experimental complexi-
ties. The dynamic nature of these signals, combined with the intricate
feedback mechanisms inherent to natural cAMP networks™", has com-
plicated efforts to establish clear frequency response relationships.
Previous theoretical work has explored specific aspects of biological
FM, such as frequency-to-amplitude coordination®” and energy opti-
mizationin oscillatory systems’. However, acomprehensive physical
framework that connects molecular dynamics to frequency-decoding
capabilities hasremained elusive. Such aframework must bridge mul-
tiple scales—from microscopic molecular interactions to macroscopic
information flow—as well as accounting for the fundamental con-
straints of biochemical networks.

To address this challenge, we reconstructed cCAMP second mes-
senger networks in Pseudomonas aeruginosa, creating a simplified
and controllable signal transduction system by replacing natural
cAMP input pathways with light-controlled production and disrupt-
ing downstream transcriptional feedback systems. This synthetic
approach enabled the precise control and quantification of cAMP
dynamics without interference from endogenous regulatory mecha-
nisms. Using this reconstructed circuit, we present a unified theoreti-
cal and experimental investigation of how biological systems decode
frequency-modulated information. We develop an analytical frame-
work that reveals a phase transition between distinct filtering behav-
ioursinmolecular networks, controlled by adimensionless parameter
thatemerges fromunderlying biochemical dynamics. This framework
enables quantitative predictions about how cellular systems convert
frequency-encoded signals into precise amplitude outputs across
different dynamical regimes.

To comprehensively characterize these dynamic circuits, we con-
structed an automated high-throughput platform for the systematic
validation of our theoretical predictions. Our results demonstrate
that the successful decoding of frequency-modulated signals enables
biological networks to mathematically expand their accessible state
space beyond what is achievable through AM alone. Under specific
conditions, coordinated frequency and duty cycle control notably
increases the total information entropy compared with amplitude-only
modulation, withamore favourable scaling as the number of regulated
genesincreases. Inathree-gene regulatory system, this enhancement
through joint frequency-to-amplitude control yields approximately
two additional bits of information entropy—effectively multiplying the
number of distinguishable expression states by nearly four.

Physical principles of frequency-to-amplitude
signal conversionin cAMP second messenger
networks

The native cAMP regulatory network in P. aeruginosa involves com-
plexsignalling mechanisms™?*, including multiple upstream adenylyl
cyclases responding to various environmental stimuli, and sophisti-
cated feedback loops through Vfr and CpdA (Fig. 1a, top). This inher-
ent complexity makes isolating and studying frequency-dependent
signal processing nearly impossible in natural systems. To overcome
this challenge, we reconstructed a streamlined cAMP signalling
pathway by replacing endogenous cAMP synthesis machinery with
ablue-light-inducible system to precisely simulate environmental
perturbations. Additionally, we replaced the native promoters of the
cAMP phosphodiesterase CpdA and the effector protein Vfr with con-
stitutive promoters insensitive to CAMP regulation, allowing precise
control over their expression levels. By coupling a Vfr-cAMP respon-
sive promoter (Plac) with the sfGFPreporter gene, we established a
quantitative monitoring system for signal output (Fig. 1a, bottom).

Notably, this reconstructed synthetic signalling system exhibits
sophisticated hierarchical signal processing characteristics that natu-
rally emerge from distinct reaction kinetics operating across multi-
ple timescales (Supplementary Note 1). Through rigorous timescale
analysis based on established kinetic parameters fromtheliterature, we
identified a critical temporal hierarchy within the system that enables
sequential information processing (Fig. 1b). The thresholding filter
operatesat the fastest timescale with characteristic time 7., (102-10°s),
facilitating rapid Vfr-cAMP binding interactions and promoter acti-
vation dynamics®. The wave converter functions at an intermediate
timescale with characteristic time T, (10°-10's), governed primarily by
CpdA-mediated cAMP degradation kinetics®. Theintegrator operates
atthe slowest timescale with characteristic time T,; (10°-10*s), deter-
mined by the intrinsic rates of protein expression and degradation®*.

This pronounced temporal separation (7T, < T; < T,;) is not merely
incidental but rather essential for proper circuit function, enabling
sequential signal processing and minimizing interference between
reaction networks®. The system’s distinct timescales naturally partition
its functionality into three modules with well-defined transfer func-
tions, collectively forming what we term the frequency-to-amplitude
converter (FAC; Fig. 1c). This modular architecture allows us to sys-
tematically analyse and predict how frequency-encoded signals are
progressively transformed as they propagate through the circuit,
providing a physical basis for understanding biological frequency
demodulation (Fig. 1d).

The wave converter (M1) functions as asignal transduction mod-
ule, transforming discrete light inputs into continuous analogue saw-
tooth patterns of cAMP concentration characterized by a defined peak
(sy) and trough (s,). This transformation occurs through the coordi-
nated action of two opposing processes: the optogenetic control mod-
ule thatregulates cAMP synthesisin response to light stimuli, and the
degradation mechanism mediated by CpdA that systematically hydro-
lyses cAMP. The interplay between these synthesis and degradation
kinetics establishes adynamic equilibrium, generating characteristic
concentration oscillations of intracellular cAMP with precisely defined
waveforms (Fig.1b). This module’s dynamics are critical for frequency
detection, as they encode temporal information into concentration
profiles that can be further processed by downstream components.

Thethresholdingfilter (M2) serves as a nonlinear signal processor,
converting oscillating cAMP signals through concentration-dependent
complex formationwith the effector protein Vfr. When Vfr-cAMP com-
plex concentrations exceed specific response thresholds, they activate
target promoters, implementing frequency-selective signal processing
through cooperative molecular interactions. This molecular filtering
mechanism transforms continuous cAMP oscillations into promoter
activation events whose temporal pattern depends critically on both
input frequency and threshold characteristics.
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Fig. 1| Reconstruction of cAMP second messenger networks and the
hierarchical architecture of frequency-to-amplitude signal conversion.

a, Comparison of cAMP signalling pathways. Top: native complex network in

P. aeruginosa with feedback loops. Bottom: streamlined reconstructed pathway
with light-inducible cAMP synthesis and constitutive CpdA/Vfr expression

for precise control and sfGFP monitoring. b, Timescale analysis revealing
hierarchical signal processing across three temporal domains: thresholding filter
(T.,), wave converter (T,) and integrator (7.;). Temporal separation (T, <« T, < T5)
enables sequential processing. ¢, FAC architecture integrating a wave converter
(M1), thresholding filter (M2) and integrator (M3) modules, each operating

High-pass
FAC

Time Frequency

within the characteristic timescales. d, Theoretical signal transformation
through the FAC system. M1 converts periodic inputs to cAMP sawtooth
waveforms, M2 processes oscillations through threshold-dependent activation
and M3 integrates filtered signals into stable protein expression. e, Filtering
characteristics in alternative FAC configurations using idealized threshold
filtering. Top: high threshold creates low-pass behaviour. Bottom: low threshold
establishes high-pass behaviour. Dataind and e are generated using ideal
threshold approximation; detailed solutions are provided inin Supplementary
Notes2and 3.

Theintegrator (M3) acts asthe system’s memory element, captur-
ing transcriptional activity through protein expression from the acti-
vated promoters. This module performs the temporal averaging of the
promoter activation events, generating stable protein levels that reflect
the time-integrated transcriptional activity. By converting dynamic
frequency information into steady-state protein concentrations, this

module completes the frequency-to-amplitude conversion process,
providingastablereadout of the original frequency-encoded signals.

Through this sequential processing, the FAC achieves robust
frequency-to-amplitude conversion (Fig. 1d). The frequency dis-
crimination capabilities of this architecture emerge from the distinct
behaviours of each module, particularly the interaction between the
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wave converter’s dynamic output and the thresholding filter’s activa-
tion threshold.

The system’s frequency selectivity is primarily determined by the
threshold setting (s") of the thresholding filter, which emerges from
the underlying biochemical properties of Vfr-cAMP interactions.
With high threshold settings (Fig. 1e, top), the filter preferentially
blocks high-frequency signals and partially transmits low-frequency
signals, resulting in a low-pass FAC configuration. Conversely,
low-threshold settings (Fig. 1e, bottom) enable the complete trans-
mission of high-frequency signals and attenuate low-frequency sig-
nals, thereby establishing a high-pass FAC configuration. This occurs
because high-frequency signals consistently exceed the threshold,
whereas low-frequency signals fall short or only intermittently cross
the threshold (Supplementary Notes 2-4 provide detailed analytical
solutions and parameter values).

Our systematic timescale analysis and chemical reaction network
(CRN) modelling enabled both temporal signal simulation and com-
prehensive exploration of dynamic interactions within the circuit
(Extended Data Fig. 1 and Supplementary Tables 1-3). This recon-
structed architecture, which we name the frequency-decoding cAMP
circuit (FDCC), provides arobust platform forimplementing and ana-
lysing frequency-based gene regulationin second messenger networks
and reveals fundamental physical principles governing biological
frequency demodulation.

Analytical framework for frequency-to-amplitude
signal conversion

Understanding the physical principles of frequency-based informa-
tion processinginbiological networks requires bridging microscopic
molecular dynamics with macroscopic systembehaviours. Toachieve
this, we developed two complementary theoretical frameworks. ACRN
model (Extended Data Tables 1and 2 and Supplementary Tables 1-3)
captures detailed molecular reaction kinetics*, providing comprehen-
sive simulation capabilities but yielding a parameter space too complex
for direct insight extraction. Complementing this, we constructed a
dimensionally reduced analytical model that extracts essential system
characteristics*?, revealing the fundamental physics governing the
system behaviour. This multilevel approach enables comprehensive
analysis frommolecularinteraction details to system-level properties.

The analytical framework strategically exploits the natural tem-
poral hierarchies within the system, where M2, M1 and M3 operate
on millisecond-to-second, second-to-minute and minute-to-hour
timescales, respectively. This pronounced temporal separa-
tion (7, < T, < T;;) enables the modular analysis of each compo-
nent, leading to analytically tractable equations that reveal how
frequency-encoded signals are systematically transformed as they
propagate through the circuit. By decomposing the systeminto func-
tionally distinct modules operating at separate timescales, we can
analyse each component independently and capture their coupled
interactions through well-defined interfaces. This mathematical
approach not only simplifies the analysis but also provides deeper
physical insights by isolating the essential mechanisms responsible
for frequency discrimination. The resulting analytical framework
reveals how specific parameter combinations give rise to distinct
high-pass and low-pass filtering behaviours, establishing a quan-
titative foundation for understanding and engineering biological
frequency-to-amplitude conversion systems.

Our modular analysis approach enables the derivation of
closed-form expressions that describe the system’s steady-state behav-
iour under periodic stimulation, providing a predictive framework for
how frequency-encoded information is processed and transformed
into stable gene expression patterns. This analytical tractability stands
incontrast to the computational complexity of direct CRN simulations,
offering both mechanistic understanding and practical design princi-
ples for frequency-responsive biological circuits.

In the M1 module, we established a detailed analysis of the reac-
tion kinetics (Supplementary Note 2) to characterize the system’s
steady-state behaviour. Under periodic light stimulation, the light-
sensitive adenylyl cyclase and phosphodiesterase in M1 regulate the
intracellular cAMP concentration through its synthesis (rate k) and
hydrolysis (ratey), respectively. The systemachieves astable oscillatory
state, exhibiting a periodic waveform (Fig. 1d). We derived an analytical
solution for this dynamic equilibrium within one period, expressed as

1-1-s)e7,
s(r) = Su e~ THOD

0<t<¢D

PD<T<P " M

Allvariables and parameters are presented in the non-dimensionalized
form. Acomprehensive summary of symbols and abbreviationsis pro-
vided in Extended Data Tables 1and 2 and Supplementary Table 4. The
duty cycle Drepresents the fraction of the period during which the light
stimulusisactive. The non-dimensional concentration s(z) represents
therelative cAMP level normalized toits theoretical maximum concen-
tration (k/y). The time and period are normalized to the characteristic
timescale of cAMP hydrolysis (y™), yielding the non-dimensional time
t=ytand period ¢ = yT, where yis the hydrolysis rate of cAMP. Under
these steady-state conditions, the non-dimensional maximum and
minimum levels of cAMP (s,,and s, respectively) are given by

1-e %

su(@,.D) = T’ (2)
e? —1

su.(¢,D) = 1 (3)

M2 processes the output signal from M1 through two sequential
Hill-type bindinginteractions: first, the cooperative binding between
cAMP and the transcription factor Vfr, characterized by the micro-
scopic dissociation constant K; (1M), and second, the binding of the
Vfr-cAMP complex to regulatory promoters, characterized by the
microscopic dissociation constant K, (uM). These Hill processes exhibit
the fastest dynamics among the three modules, with their character-
istic time T, being substantially shorter than 7. This pronounced
timescale separation allows us to assume that the dynamic response
of M2 is effectively instantaneous relative to the cAMP oscillations
generated by M1. Consequently, in our theoretical model, the temporal
evolution of M2’s output depends solely on the time-varying input s(z)
from M1, with the two Hill processes modulating the signal amplitude
(Supplementary Note 3). Following this processing, the fraction of
activated promoters ¢(7) can be analytically expressed as

2 2
gy = — 29SO @)
1+ @A+ Da2s(r)
The dimensionless parameter A = [Vfr],/K, denotes the relative abun-
dance of transcription factor Vfr normalized to the microscopic dis-
sociation constant K, for Vfr-promoter binding, capturing theimpact
of transcription factor availability in the system. The parameter
a = (k/y)/K,characterizes the cAMP signal strength, defined as the ratio
of maximumachievable cAMP concentration (k/y) to the microscopic
dissociation constant K; for Vfr—-cAMP binding, reflecting the relative

strength of the cAMP signalling pathway.

M3 functions to integrate and average the output from M2, rep-
resenting the protein expression level from promoters activated by
Vfr-cAMP complexes. Assuming negligible basal expression fromthe
regulated promoters, we derived the theoretical relationship between
periodicinputsignals and steady-state protein expression (Supplemen-
tary Note4).Inthesteady state, the time-averaged protein expression
level over one period can be expressed as
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where jrepresents the dimensionless protein expression level normal-
ized toits maximum achievable value. Through mathematical analysis
of this temporalintegration, we obtained an analytical solution for the
steady-state expression level:

_(0{ ¢ D /1) 1 )laz ‘/1+(/1+1)a25
. 9., 4) = 1+(/l+1)0(2 1+(,1+1)a252
(6)
_ oA+ tan_l aVA+1(sy—s.) Aa2D
1+(A+1)a? 1+(A+1)a2s sy 1+(A+1)a?

This solution quantitatively describes how the system transforms
frequency-encoded inputs into defined protein expression levels
through the sequential processing of the three modules.

In the theoretical analysis, we first examined the system behav-
iourwhenDequals1.Under this condition, s, =s, =1,and equation (6)
reduces to a pure amplitude-dependent expression:

o _ Aa?
y =30 =1 =y@aA) = m, )

where y' represents the FDCC response at full duty cycle, determined
by parameters a and A. The amplitude dependence enters through
the parameter a = k/(yK,), where the effective cAMP synthesis rate
k=k,[bPAC1is directly controlled by light intensity /through the con-
centration of photoactivated adenylyl cyclase [bPAC’]. Higher light
intensities increase [bPAC’], thereby elevating k and a, which directly
modulates the outputresponsey’. This simplified case serves as arefer-
ence point for understanding the system’s basic amplitude response
characteristics.

To analyse the frequency-dependent behaviour, we identified a
critical threshold in M2’s filtering characteristics by examining the
inflection point of equation (4) (where d’y/ds? = 0). Thisis the point at
which the system’s response sensitivity is the maximum, as it marks
the steepest rate of change in the input-output relationship. This
analysis yielded a threshold value s’ for the non-dimensional cAMP
concentration: s* = 1/4/3a2(A + 1) (Supplementary Note 5).

This threshold characterizes the filtering properties of M2, rep-
resenting the concentration at which the rate of change in promoter
activation is the maximum. Using this threshold definition, we com-
bined equations (6) and (7) to obtain acomprehensive expression for
the system response:

Ja.f,D,2) =y* (D + G), (8)
where
2
G(f.D,s*) =f [ In [ n3e) }
1+(s/\/3s*)

9
—/3s* (tan_l ( V3s* (su—s1) ))]
(\65*)2+5H5L

Here f=1/¢ represents the non-dimensionalized frequency.

This formulation reveals a sophisticated decomposition of the
system’s response into three fundamental components (Fig. 2a). First,
the AM componenty establishes the baseline response level, whichis
primarily governed by the system’s intrinsic biochemical parameters
including the relative abundance of transcription factors (1) and the
strength of cCAMP signalling (a). Second, the PWM, represented by
D, directly captures the temporal characteristics of the input signal
through its duty cycle, reflecting the proportion of time the system

is actively stimulated within each period. Finally, the FM component
G introduces a dynamic, frequency-dependent modification to the
response, enabling the system to discriminate between signals of dif*-
ferent frequencies and maintain the same duty cycle and amplitude.
Together, these three components form a comprehensive framework
that describes how the FDCC integrates and processes complex tem-
poral signalsinto defined gene expression patterns.

To facilitate a more intuitive analysis of the system’s behaviour,
we normalized the output by introducing

Y= yl =D+G, (10)
whichrepresents the total normalized response combining both duty
cycleand frequency-dependent effects (Supplementary Note 6). This
normalization allows us to examine the frequency response character-
istics independently of the amplitude scaling factor y".

To establish a comprehensive macroscopic perspective of the
FDCC function, we focused on the difference between high-frequency
and low-frequency responses, introducing the metric Y;;; - Y, where
Yurand Y represent the normalized outputs at high and low frequen-
cies, respectively. Although the analytical expression for this difference
iscomplexinits general form, we found that it simplifies remarkablyin
the limiting cases of very high and very low frequencies (Supplemen-
tary Note 7). The simplified expression primarily depends on two key
parameters: threshold s"and duty cycle D.

Thisinsightled usto construct phase diagram (Fig. 2b) visualizing
Yur - Yir as a function of these two critical parameters. The diagram
reveals a clear dichotomy in the system’s behaviour. As s” increases,
Yur — Y transitions from positive to negative values, indicating a shift
from high-pass to low-pass characteristics. Conversely, increasing D
promotes a transition from low-pass to high-pass behaviour. This dual
dependence is particularly important because D serves as an experi-
mentally controllable parameter, offering a practical means to modu-
late the system’s frequency response within an appropriate range of s".

Through careful mathematical analysis, we identified a critical
boundary between these two regimes, expressed by the relationship
D=3s? This elegant relationship (Fig. 2b (dashed lines) and Supple-
mentary Note 7) provides a clear demarcation between high-pass and
low-pass behaviours, offering valuable guidance for circuit design
and optimization.

Further quantitative analysis of the Y,;; and Y, metrics revealed
fundamental differences between the high-pass and low-pass configu-
rations. High-pass FACs could achieve larger differences in response
between high and low frequencies (|Y,;; - Y.¢) when optimally config-
ured, providing greater potential for frequency discrimination. This
enhanced capacity for distinguishing frequency differences makes
high-pass configurations particularly attractive for engineering precise
frequency-dependent responses. Moreover, we observed a critical limi-
tation in low-pass configurations: for any given s’, low-pass responses
generally produced smaller Yvalues across their operating range. This
characteristic poses practical challenges, as smaller output signals
are inherently more susceptible to experimental noise and cellular
stochasticity, potentially compromising measurement accuracy and
reliability (Fig. 2c). Our comprehensive stochastic analysis demon-
strates that although intrinsic cellular noise introduces variability in
systemresponse, the core frequency discrimination capabilities remain
intact(Extended DataFig.1), with noise effects primarily dependent on
transcriptional components and signal strength relative to the theo-
retical detection threshold. We analysed how system noise affects the
response to high- and low-frequency signal decoding, confirming that
high-pass configurations maintain superior noise tolerance compared
with low-pass systems (Supplementary Fig.1and Supplementary Note
8.1). This inherent limitation of low-pass configurations, combined
with their reduced frequency discrimination capability, provided
a clear rationale for our experimental strategy. Consequently, we
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Fig. 2| Theoretical framework and validation of the FDCC. a, Decomposition

of FDCC response into AM (y'), PWM (D) and FM (G) components. b, Phase
diagram showing high-pass/low-pass FAC transition. Dashed line (D = 3s%) marks
the theoretical boundary. Colour indicates the Y - ¥, difference (evaluated
at107's™"and 107 s™). ¢, Frequency discrimination capability versus duty

cycle. High-pass FACs show enhanced discrimination compared with low-pass
configurations. d, Maximum (s,;)) and minimum (s,) signal levels versus frequency

and duty cycle. Lines, theory; circles, CRN simulations. e, Thresholding filter
activation profiles showing analogue processing capabilities modulated by A.
Threshold positions:s,"=0.029 (1,=100), s, = 0.018 (4, =250) and s, = 0.009
(4,=1,000).f, Normalized output (¥) for high-pass and low-pass configurations.
Lines, theory; points, CRN simulations across different duty cycles. g, Theory-
simulation correlation across the complete parameter space (R* = 0.992),
validating the analytical framework accuracy.

prioritized the investigation and implementation of high-pass FACs and
conducting more limited studies of low-pass configurations primarily
to validate our theoretical framework.

To develop amore comprehensive understanding of the system’s
behaviour, we expanded our analysis through additional phase
diagrams that explored the interplay between s’, D and the non-
dimensionalized frequency f. These diagrams mapped their influences
on both frequency response function G and final output y( f,D,s*)
(Supplementary Fig. 2). This expanded parameter space exploration
not only validated our theoretical predictions but also provided
practical insights for optimizing circuit performance across different
operating conditions.

The dynamicbehaviour of M1reveals sophisticated signal process-
ing capabilities (Fig. 2d). At constant periods, higher D values lead to
increased maximum (s;) and minimum (s,) signal levels, demonstrating
how the system accumulates the signal during the ‘on’ phase of each
cycle. When the duty cycle is fixed, increasing frequency causes s, to
decrease whereass, rises, bothasymptotically approaching D. This con-
vergence of signal bounds at high frequencies reflects afundamental
characteristic of the system’s temporal signal processing capability.

M2 exhibits sophisticated signal processing behaviour that tran-
scends conventional binary switching mechanisms (Fig. 2e). Although

ourinitial conceptual framework suggested a sharp threshold (Fig. 1b),
theimplemented biological system reveals amore nuanced response
landscape. Rather thanenforcing anabrupt transitionatafixed thresh-
old value, M2 creates a continuous activation profile in which the
promoter activity undergoes a gradual transition between inactive
and active states. This analogue processing capability emerges from
the cooperative binding dynamics between cAMP and the Vfr transcrip-
tion factor, with the activation threshold manifesting as a responsive
range rather thanadiscrete point (Extended DataFig.1). The system’s
filtering characteristics can be precisely tuned through transcription
factor abundance (1), where higher A values systematically shift the
activation profile towards lower cAMP concentrations. This tunable
analogue filtering mechanism not only provides more sophisticated
control over frequency response characteristics but also better reflects
the inherent complexity of biological signal processing.

The integration of M1 and M2 dynamics produces distinct
frequency-dependent behavioursinthe circuit output. Inthe low-pass
configuration (Fig. 2f), increasing frequency progressively attenu-
ates the expression level at fixed duty cycles. Conversely, high-pass
configurations (Fig. 2f) show enhanced expression at higher frequen-
cies, demonstrating the circuit’s ability to selectively respond to dif-
ferent frequency ranges. This frequency selectivity emerges fromthe
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nonlinear interaction between the wave converter’s signal processing
and the thresholding filter’s activation dynamics.

To assess the validity of our timescale separation assumption,
we compared normalized output predictions from both CRN simula-
tions and analytical solutions across the entire accessible parameter
space (Fig. 2g). The exceptional correlation (R* = 0.992) between these
independent approaches confirms that our analytical decomposition
successfully captures the essential dynamics of the system. This agree-
mentis particularlyimportant because the CRN simulations implement
all microscopic molecular interactions without any predetermined
hierarchical organization, yet produce results that align precisely with
our analytical predictions derived from modular timescale separation.
This validation spans multiple orders of magnitude inkey parameters,
confirming that the simplified analytical model accurately represents
the fundamental physics governing frequency-to-amplitude conver-
sioninthe complete reaction network.

These results validate our theoretical framework across multi-
ple scales of analysis—from microscopic reaction kinetics to macro-
scopic system behaviours. By identifying the critical dimensionless
parameters and phase boundaries that dictate system behaviour,
this framework not only advances our fundamental understanding of
biological frequency processing but also provides quantitative design
principles for engineering synthetic circuits with programmable fre-
quency response characteristics.

Specifically, our analysis reveals that the dimensionless threshold
parameter s* = 1/4/3a2(1 + 1) emerges as the critical determinant of
filtering behaviour, with its value relative to D establishing whether
the system exhibits high-pass (s* < v/D/3) or low-pass (s* > y/D/3)
characteristics. This parameter encapsulates the interplay between A
and a, revealing how molecular concentrations directly shape the
frequency response properties.

The mechanistic principle underlying frequency discrimination
emerges from the dynamic interaction between time-varying cAMP
signals and the nonlinear activation threshold of the Vfr-promoter
system. At high frequencies, cCAMP oscillates with reduced ampli-
tude but elevated minimum concentrations, allowing systems with
low thresholds to maintain persistent activation. Conversely, at low
frequencies, CAMP reaches higher peak concentrations but drops to
lower minima, favouring systems with high thresholds. This physical
mechanism establishes a direct link between molecular kinetics and
frequency-dependent gene expression, a principle probably used by
several natural second messenger signalling networks.

Automated measurement platform for
quantifying frequency-dependent dynamicsin
cellular signal processing

Our synthetic biology implementation translates the theoretical FAC
architectureinto aprecisely engineered genetic circuitin P. aeruginosa,
enabling the precise control of gene expression through bothmolecular
and operational parameters (Extended Data Table 3and Supplementary
Note 9). Mlisrealized through the optogenetically controlled adenylyl
cyclasebPACand the phosphodiesterase CpdA, which together regulate
intracellular cAMP dynamics. Lightintensity directly controls bPAC acti-
vation, determining the cAMP synthesis rate k, whereas CpdA expres-
sionlevels set the degradation rate y. M2 isimplemented through the
Vfr transcription factor, which forms complexes with cAMP to activate
the target promoters. Vfr concentration directly corresponds to the
parameter Ain our model, whereas Vfr-cAMP binding affinity corre-
sponds to parameter K,. M3 consists of the sfGFP fluorescent reporter
under control of the Vfr-responsive promoter, providing a quantitative
readout of the circuit’s frequency response. At the molecular level, the
circuit can be tuned through CpdA and Vfr expression levels, which
affect parameters aand A, whereas at the operational level, it responds
toexperimental parametersincludinglightintensity (/) and duty cycle
(D). These complementary control mechanisms collectively shape the

circuit’'soutput (¥), providing multiple degrees of freedom for engineer-
ing the desired frequency responses. To systematically explore this
multidimensional parameter space, we constructed 65 distinct FDCC
variants with different combinations of CpdA and Vfr expression levels
(Supplementary Notes 10 and 11 and Supplementary Fig. 3).

To address these challenges, we developed a high-throughput
automated experimental platform capable of maintaining stable bacte-
rial states through continuous culture (Fig. 3a). The platformintegrates
four core functional modules: (1) an optoplate for programmable light
signal control, (2) bacterial culture agitation, (3) automated solution
handling for continuous dilution and (4) fluorescence measurement.
This integrated system enables parallel testing of multiple 96 experi-
mental samples and providing independent control of light signal
parameters forindividual wells (Supplementary Fig. 4). The continuous
dilution culture maintains stable growth rates, preventing protein con-
centration fluctuations from growth phase transitions, whereas auto-
mated fluorescence measurements enable systematic data collection.

The automated workflow follows a rigorously controlled pro-
cess (Fig. 3b). Under constant temperature and agitation conditions,
bacterial strains receive independently programmed light signals via
the optoplate control unit (OPCU) device. Hourly sampling cycles
remove 50 pl for fluorescence measurement, whereas the remaining
culture undergoes rapid dilution (4 min) with a fresh medium. This
precise temporal control ensures cultivation continuity and minimizes
perturbations to bacterial growth states (Supplementary Note 12 and
Supplementary Figs. 4 and 5).

Platformvalidation demonstrated exceptional stability and repro-
ducibility. The system maintained optical density (OD) at 0.09 + 0.01
across 96 parallel samples over extended periods (>12 h; Fig.3c). Even
with varyinginitial conditions, continuous dilution established consist-
ent OD values within -4 h. Cross-batch reproducibility analysis revealed
excellent consistency in fluorescence measurements, with coefficients
of variation below 10% (Fig. 3d).

To systematically characterize the circuit behaviour, we first
mapped the relationship between key parameters (y and s’) and fre-
quency response characteristics (Fig. 3e). Parameter estimation for
yand s was performed using two complementary fitting approaches
(Supplementary Note 14). Our systematic approachinvolved engineer-
ing 65 distinct FDCC variants by varying promoters and RBS sequences
controlling CpdA and Vfr expressions, followed by staged parameter
fitting with physiological constraints (Extended Data Fig. 2 and Sup-
plementary Notes 13 and 14). Since y depends on CpdA and Vfr concen-
trations and A scales directly with the Vfr concentration, we obtained
strains with varying y, a and A values (Supplementary Table 5). The
resulting phase diagram reveals distinct regions corresponding to
different frequency-to-amplitude conversion behaviours, with ¥ - V¢
serving as a metric for frequency discrimination capability. For this
metric, Y, was evaluated at frequencies corresponding to bacterial
division cycles (approximately 1/2,400 s™), ensuring stable cellular
states during measurement periods. The high-frequency response
(Y,r) was assessed at1/100 s, establishing an experimentally accessible
range that respects cellular physiological constraints. We strategically
selected 23 representative strains fromour engineered FDCC variants,
shown as circular markersin the phase diagram, to systematically sam-
pledifferent regions of the theoretical parameter space. These strains
were specifically chosento validate our theoretical predictions across
diverse operating regimes and maintain experimental feasibility within
biological constraints.

Comprehensive frequency response characterization using our
automated platformrevealed remarkable agreement between theo-
retical predictions and experimental measurements (Supplementary
Note 14.4). Figure 3f presents the frequency response curves for all
strains atafixed D = 0.3, demonstrating consistent alignment across
diverse parameter combinations and validating our theoretical
framework’s predictive power. The parameter fitting procedures
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Fig. 3| High-throughput automated platform enables the systematic
characterization of FDCC frequency responses. a, Schematic of the automated
experimental platform integrating optoplate control, bacterial culture, dilution
and fluorescence measurement for the parallel testing of multiple 96 samples.
b, Workflow: bacterial strains receive programmed light signals via OPCU with
hourly cycles of 50-pl sampling and rapid dilution. ¢, Platform stability over

>12 h showing OD maintenance at 0.09 + 0.01 across 96 samples. d, Cross-batch
reproducibility with <10% variation. Data are presented as mean values; the error
bars are standard deviation (s.d.) of the mean; N = 3independent experiments.
CVrefersto the coefficient of variation. e, Phase diagram of circuit parameters
(y,s) versus frequency response (¥, - ¥;;) at D= 0.3, evaluated at1/100 s™

(high frequency) and 1/2,400 s™ (low frequency). Circular markers, 23 FDCC
variants. The error bars are s.d. of the fitted parameters from experimental data

averaged over N = 4 independent biological replicates. f, Frequency response
curvesatD=0.3.Lines, theory; points, experiments. g, FDCC variantsat D= 0.1
showing high-pass behaviours. The error are s.d. of Y mean; N = 3 independent
biological replicates. h, Strain FACO3C17V17 across duty cycles. The error bars
ares.d. of Ymean; N = 4 independent biological replicates. i, Dynamic switching
in FACO3C22V34. Theerror bars are s.d. of Y mean; N = 3independent biological
replicates. j, Phase diagram mapping of transitions observed ini, with solid
circular points and arrows indicating parameter-driven switches between
high-pass and low-pass regimes. Responses are evaluated at1/100 s and
1/2,400 s™. k, Theory-experiment correlation (R*= 0.986). The error bars are s.d.
of Ymean; N =3 independent biological replicates. Unless otherwise specified,
biological replicates refer to separate cultivation of individual clones.

yielded biologically plausible protein concentrations within the
0.1-5-puM range, with fitted values showing clear correlation with
genetic design choices (Extended Data Tables 1 and 2 and Supple-
mentary Note 14.4).

Our theoretical analysis (Fig. 2b) identified D as a crucial param-
eterinmodulating frequency responses. We validated this prediction
through two complementary experimental approaches. First, we char-
acterized several FDCC variantsat D = 0.1 (Fig. 3g), demonstrating that
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circuits maintain their frequency discrimination capabilities even at
low duty cycles and exhibiting systematic variations in response to
amplitude and frequency sensitivities based on molecular param-
eters. Second, detailed characterization of a representative strain
(FAC03C17V17) across multiple duty cycles (Fig. 3h) revealed how
duty cycle modulation systematically alters both response magni-
tude and frequency sensitivity and maintains fundamental high-pass
characteristics. Cross-validation using parameters fitted from the
D= 0.1conditionsuccessfully predicted responses at other duty cycles
without additional parameter adjustment, demonstrating the model’s
predictive validity.

A particularly crucial finding emerged from the strain
FAC03C22V34, which demonstrated controlled switching between
high-pass and low-pass FAC behaviours through the precise manipula-
tion of light intensity and duty cycle (Fig. 3i). Light intensity provides
direct experimental control over the threshold parameter s  through
the modulation of the activated bPAC concentration, where higher
light intensity increases [bPAC’], thereby raising a and consequently
lowering s accordingtos o 1/a (Extended Data Table 3). This dynamic
control over the frequency response characteristics revealed the cir-
cuit’s programmable nature. By mapping these behavioural transitions
ontothetheoretical phase diagram (Fig. 3j), where solid circular points
and connecting arrows track parameter-driven changes, we provided
direct experimental validation of the predicted phase boundaries
between distinct operating modes.

To assess the validity of our theoretical framework, we compared
experimental measurements with theoretical outputs (Y) derived
fromfitting our mathematical model to eachindividual experimental
condition across the entire accessible parameter space (Fig. 3k). Each
data point represents a different combination of strain, frequency,
duty cycle and light intensity, where theoretical outputs were calcu-
lated using parameters fitted to that specific condition. The excep-
tional correlation (R*= 0.986) between experimental measurements
and fitted theoretical outputs spans multiple orders of magnitude in
key parameters, demonstrating that our mathematical framework
accurately captures the system behaviour across diverse strains and
operational conditions.

These detailed characterizations demonstrate that the FDCC
architectureimplements awell-defined physical system for frequency-
dependent information processing in living cells. The quantitative
correspondence between theory and experiment across diverse condi-
tions establishes both feasibility and fundamental limits of biological
frequency demodulation and provides precise design principles for
engineering gene regulatory systems with programmable frequency
response characteristics. This physics-based approach to cellular
frequency demodulation opens new possibilities for implementing
sophisticated computational functions insynthetic biological systems.

Information entropy enhancement through FM
Second messenger systems like cCAMP networks naturally coordinate
the expression of multiple downstream genes™***, functioning as
information processing hubs that translate environmental signals
into coordinated cellular responses. After establishing the physical
principles governing frequency-to-amplitude conversioninindividual
circuits, we sought to explore the fundamental mechanisms by which
FM could enhance information transmission across biological signal-
ling networks.

Inbiological systems, second messengers typically regulate mul-
tiple target genes with diverse response thresholds. FMintroduces an
orthogonal encoding dimension that potentially expands the acces-
sible state space beyond traditional amplitude-based control. We
hypothesized that when multiple genes respond to a single second
messenger signal with differing sensitivities, frequency-based control
could unlock new regulatory possibilities by accessing regions of state
space fundamentally inaccessible through AM alone.

To quantitatively test this hypothesis, we analysed a two-
component systemin which genes exhibit distinct sensitivities to Vfr-
cAMPregulation. These differences are characterized by dissociation
constants K, and K5, along with their corresponding dimensionless
parametersA, and A, (equation (6)). Here A, and A represent the relative
abundances of the transcription complexes associated with promoters
A and B, respectively. This configuration creates a two-dimensional
statespace (Y,, ¥;) withnormalized protein expression levels (equation
(10)). Although conventional control relies on/and D, our FDCC archi-
tecture introduces fas an additional control dimension, enabling the
exploration of howinformation entropy scales with increasing degrees
of freedom (Fig. 4a).

To quantitatively analyse state-space accessibility, we introduced
a discretization parameter € = 0.1, which functions as a measure of
resolution in state-space partitioning. Similar to how the minimum
number of spheres N(R) needed to cover a point set scales inversely
with sphereradius R as N(R) = 1/R¢ (ref. 40), the total number of theo-
retically distinguishable states scales inversely with our discretization
parameter €. This parameter divides each dimension of normalized
expression (Y) into 1/€ equal intervals. In a two-promoter system,
our choice of e creates a 10 x 10 grid with 100 theoretically possible
distinct expression states (Fig. 4b). Although this discretization pro-
vides a simplified metric for quantifying state-space expansion, it is
important to note that the actual resolution of distinguishable gene
expression states is fundamentally limited by intrinsic cellular noise
(Extended Data Fig. 3a and Supplementary Note 15.4). Our choice of
€=0.1is biologically justified by stochastic analysis, showing that
reliable state discrimination requires the separation of at least twice
the signal standard deviation (-0.08-0.09), with scaling relationships
remaining robust across different € values (Extended Data Fig. 3b
and Supplementary Note 15.5). These quantitative noise studies vali-
date our discretization approach and confirm that the observed scal-
ing relationships reflect genuine biological capabilities rather than
computational artefacts. Therefore, this grid-based quantification
provides a well-grounded measure to demonstrate relative changes
in state-space accessibility***.

To rigorously quantify the information content of accessible
states, we applied Shannon’sinformation theory framework*%. Assum-
ingauniform probability distribution across accessible states (which
maximizes entropy for a given number of states), we calculated the
information entropy H = -} plog,[p;], where p;, represents the prob-
ability of the system occupying state p,. Under pure AM, we observed
only 19 distinct states, represented by the blue curve and correspond-
ing grid cellsin Fig. 4b, show aninformation entropy of H,, = 4.25 bits.
However, introducing FM revealed a remarkable expansion of acces-
sible states. By simultaneously tuning both D and fas frequency was
varied from 1 to 1x 107 (non-dimensionalized units), the system
accessed additional regions of state space (red grid cells), expanding
the total accessible state space to 38 distinct states and increasing the
information entropy to Hg, = 5.25 bits.

Our analysis revealed that the accessible state space expands
nonlinearly with the increasing number of regulated genes (Extended
Data Fig. 3b and Supplementary Note 15.3). In three-gene systems,
maintaining the same discretization parameter and exploring the
expanded state space (Y,, Y3, Yc), we observed an increase from
Hym, = log,[27] = 4.75 bits under amplitude-only modulation to
Hpn, = log,[95] ~ 6.57 bits when FMis introduced as an additional
control dimension, representing a gain of approximately 1.82 bits
(Fig. 4c). This higher-dimensional analysis revealed a critical insight:
amplitude-only control and combined frequency-to-amplitude control
exhibit fundamentally different scaling behaviours as the number of
regulated genesincreases.

Under the specific diverse response thresholds of multiple target
genes, a mathematical analysis of these scaling relationships demon-
strated that information entropy under AM scales as H,,, =< 0.8log,[n],
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Fig.4|FMincreases the information entropy of multigene regulatory systems.
a, Schematic showing frequency control as an additional parameter increasing
information entropy beyond AM alone. b, Theoretical two-

promoter system (¢ = 0.1discretization). Blue, amplitude-only states (19 states,
~4.25 bits); red, additional frequency-modulated states. Total, 38 states

(~5.25 bits) combining AM and FM. ¢, Three-dimensional state-space expansion
from 27 states (-4.75 bits) under AM to 95 states (-6.57 bits) with frequency
control. Colour gradient, amplitude only (blue) to frequency modulated

(red). d, Information entropy scaling: FM (Hp, = 2.0log,[n]) (blue) versus AM
(Hpaw < 0.8log,[n]) (red) with number of genes n. e, Two-promoter experimental
validation. Normalized expression (Y) from sfGFP and CyOFP measurements
demonstrating entropy expansion. The error bars ares.d. of Y mean for
promoters nanAp and nupGp; N = 4 independent biological replicates. Colour
scheme matches the theoretical predictionsinb. f, Three-promoter system
validation using sfGFP, CyOFP and mScarlet measurements, confirming the
theoretical predictions showninc.

where n represents the number of regulated genes. By contrast, when
FMisintroduced as an additional control dimension, it enables amore
rapid information entropy scaling of Hy, > 2.0log,[n] (Fig. 4d), where
H;y represents the total accessible state space achieved through coor-
dinated regulation of a, D and f. This differential scaling reveals that
FM’s information advantage becomes increasingly pronounced with
larger gene networks, as the coordinated temporal dynamics expand
the regulatory capabilities beyond what amplitude control alone can
achieve. However, this enhancement will ultimately be bounded by
physical transmission limits inherent to cellular systems, including
molecular noise floors, finite protein concentrations and the temporal
resolution of cellular machinery.

To experimentally validate these theoretical predictions, we
conducted a high-throughput screening of 260 promoter candidates
toidentify sets with appropriate A values (Supplementary Fig. 6 and
Supplementary Notes 16 and 17). We constructed both two-gene
systems expressing sfGFP and CyOFP (Fig. 4e) and three-gene sys-
tems expressing sfGFP, CyOFP and mScarlet (Fig. 4f). Using the
same colour mapping scheme as in our theoretical analysis, the
experimental results demonstrated clear state-space expansion

through FM in both two- and three-dimensional cases, confirming
our theoretical predictions.

These findings provide fundamental insights into both natural
and synthetic biological systems. In natural second messenger net-
works, the more favourable scaling of frequency-based information
transmission may explain the prevalence of oscillatory signalling
observed across diverse cellular contexts. For synthetic biology, these
quantitative scaling laws establish design principles for engineering
sophisticated circuit architectures that exploit FM to achieve enhanced
control over multiple coordinated outputs. The demonstrated expan-
sionininformation entropy represents a physically efficient strategy
forincreasing the computational capabilities of cellular systems. Our
analysis also reveals fundamental frequency resolution limits of the
FAC system, including maximum resolvable frequencies (0.025s™)
determined by cAMP degradation kinetics and minimum distinguish-
able frequency differences (25% relative change) in the most sensitive
operational regions. These resolution characteristics align well with
biologically relevant timescales, enabling discrimination between
rapid stressresponses and sustained metabolic adaptations as well as
operating within biophysical constraints (Supplementary Note 8.2).
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Summary and perspective

In living systems, information processing extends far beyond sim-
ple ON/OFF switching to encompass rich temporal dynamics. Our
work reveals a fundamental physical mechanism through which
bacterial networks decode frequency-modulated information via a
three-module FAC architecture. This system—comprising wave con-
verter, thresholding filter and integrator modules with distinct time-
scale hierarchies—transforms oscillatory cAMP signals into precise
gene expression patterns. By developing FDCCs with programmable
frequency responses, we establish a rigorous theoretical and experi-
mental framework that bridges microscopic molecular dynamics with
macroscopic information processing. Our analytical model, validated
through systematic experimentation onanautomated high-throughput
platform, reveals that introducing FM as an additional control dimen-
sionenablesinformation entropy to scale as Hy, > 2.0log,[n] compared
withamplitude-only control’s H,, < 0.8log,[n], where nrepresents the
number of regulated genes. This differential scaling provides approxi-
mately two additional bits of informationin three-gene systems, offer-
ing a physical explanation for the prevalence of oscillatory signalling
across biological contexts and establishing design principles for engi-
neering sophisticated synthetic circuits with enhanced computational
capabilities.

Our information-theoretic approach complements established
signal transmission studies that focus on distinguishing input con-
centrations under noise constraints, typically achieving limited
information transmission throughindividual pathways*’. Rather than
improving signal discrimination, FM expands regulatory capabilities
by enabling the orchestration of complex, coordinated responses
across multiple target genes through orthogonal temporal control
dimensions. Although our noise analysis (Extended Data Fig.1and Sup-
plementary Notes 8 and 15) confirms that intrinsic cellular fluctuations
establish fundamental resolution limits, the enhanced entropy scaling
reflects genuine capacity for sophisticated pattern generation that
extends beyond conventional amplitude-based regulation.

The emergence of dynamic signal processing ingene circuit design
marks an important advancement in cellular information process-
ing’. The field of synthetic biology has evolved from constructing
basic regulatory elements to developing complex circuits including
toggle switch', oscillators™*® and logic gates'?°, primarily relying on
amplitude-based regulation****. However, this amplitude-focused
approach captures only part of the rich dynamics observed in natural
systems. Recent efforts toincorporate temporal control haveled to the
development of PWM****¢ where information is encoded through vari-
ationsinsignal duration. Although PWM represents progress towards
dynamic control, itultimately remains an extension of amplitude-based
regulation, asit relies onmodulating time-averaged signal intensity. By
contrast, pure FM, where duty cycle remains constant, establishes an
independent dimension for information encoding”. This fundamental
distinction between PWM and FM highlights the untapped potential
of frequency-based control in expanding the capabilities of synthetic
gene circuits.

Our approach integrates control theory principles with syn-
thetic biology to create a robust theoretical framework. The FAC
architecture demonstrates how biological systems can transform
frequency-encoded signals into amplitude-modulated gene expres-
sion patterns, analogous to engineered FM systems. This framework,
combining CRN*® simulations with theoretical analysis**, provides a
multiscale understanding from molecular interactions to system-level
behaviours. The successful experimental validation through our auto-
mated platform demonstrates the feasibility of implementing sophis-
ticated control strategies in living cells.

The development of our automated experimental platform rep-
resents a pivotal advancement in synthetic biology’s design-build-
test-learn cycle*®. Traditional characterization methods have been
insufficient for studying frequency-dependent responses, as they lack

the precision and throughput needed for the systematic analysis of
dynamicbehaviours*~', Our platform addresses these limitations by
enabling the parallel testing of multiple strains and maintaining precise
control over both cellular states and dynamic inputs. This technical
advance, combined with recent developments in automated screen-
ing systems*, establishes a new experimental paradigm for studying
frequency-modulated gene circuits. The integration of theory and
automated experimentation not only validates our theoretical pre-
dictions but also provides a generalizable approach for investigating
complex dynamic behaviours in biological systems.

Our experimental findings, coupled with observations from
natural systems, provide compelling evidence for the significance of
frequency-modulated signal processing in cellular information pro-
cessing. We demonstrated that FM increases the information entropy
of signalling pathways by enabling the global regulation of multiple
target genes with different activation thresholds or affinities. This was
particularly evident in our multigene system experiments, where FM
notablyincreased theinformation entropy of gene expression patterns,
achieving up totwo bits of additionalinformation contentin three-gene
systems. This increased information processing capability mirrors
natural systems, where FM facilitates the proportional co-regulation of
diversetarget genes, as observedinthe pulsatile behaviour of transcrip-
tion factors such as p53 (ref. 52), Ascll (ref. 53), NF-kB (ref. 54), Msn2
(ref.10) and the SOS stress response system'?. Notably, FM provides
a mechanism linking individual protein dynamics to large regulon
expression, suggesting its role in orchestrating genome-scale expres-
sion patterns. Given its observed functions in protein and metabolic
networks, as well as transcriptional regulation, we anticipate that
frequency-modulated regulation may represent a general principle by
which cells encode, process and respond to dynamic environmental
signals with expanded information content.

From a synthetic biology perspective, frequency-modulated cir-
cuits offer distinct advantages through their relatively simple genetic
architecture®. The FAC system requires a modest set of genetic ele-
ments compared with traditional synthetic circuits that often demand
multiple regulatory components and precise expression balancing.
This architectural simplicity, combined with sophisticated control
capabilities, suggests that integrating frequency-modulated regula-
tion into synthetic circuits is not only feasible but potentially trans-
formative. Moreover, incorporating dynamic frequency-based control
into engineered circuits presents unique opportunities to effectively
address and exploitinherent cellular characteristics, such as noise man-
agement and shared regulatory resource allocation®. This approach
to circuit design opens new possibilities for engineering cellular
behaviours in ways previously unexplored in traditional engineering
disciplines.

Looking forward, this understanding of frequency-based signal
processing opens new avenues in both fundamental research and
practical applications’. In metabolic engineering, the coordination
of multiple genes through FM could enable sophisticated pathway
control. The expanded state space accessible through FM provides
new tools for fine tuning cellular behaviour and controlling complex
phenotypes. Furthermore, the connection between single-protein
dynamics and genome-wide expression patterns may offer insights
into coordinated cellular responses across different organizational
scales, potentially revealing new principles for both synthetic biology
design and natural regulatory networks.

Several important challenges and opportunities remain for
future research. These include developing more sophisticated
frequency-responsive elements, improving methods for temporal
control of cellular systems and better understanding of noise charac-
teristicsin frequency-modulated circuits. Additionally, exploring FMin
diverse cellular contexts and organisms could reveal new applications
and design principles, further expanding the potential of this regula-
tory approachin synthetic biology.
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Methods

Computational model

Inthis study, we use deterministic mass-action CRN models to simulate
the system. The genetic circuit FDCC, comprising ten distinct species
and nine chemical reactions (Supplementary Table 1, r1-r9), is at the
core of these models. Supplementary Table 2 shows adiagram that pro-
vides amore realistic representation of the CRN within abacterium. The
reaction parameters used in thismodel, drawn from existing literature
orourexperimental data, are detailed in Supplementary Table 3. In this
model, we simplify the processes of transcription and translation of
CpdA and Vfr, treating them as constants determined by the bacterial
strain. The simulation model further streamlines the transcription and
translation of proteinsinto asingle step, and introduces a deactivation
stage for bPAC to incorporate the non-instantaneous deactivation of
bPAC post-light exposure.

Parameter estimation and fitting procedures

Using an automated detection platform, we systematically measured
fluorescence outputs (F;) under fixed duty cycle conditions (D =0.3)
across various oscillation periods 7(100 s,300s,5005,9005,1,800 s
and 2,400 s), with dark controls (Fp,,) and continuous illumination
(Fuigno) serving as reference measurements. Fluorescence quantification
used two normalization approaches: for samples containing internal
controls, we used the ratio of reporter gene sfGFP fluorescence to
internal standard CyOFP fluorescence; for samples without internal
standards, we applied OD-normalized reporter fluorescence intensity.
Normalized response values Y = (F; = Fpn)/(Fiign: — Foand Were calculated
to generate frequency response curves for each engineered strain.
We initially constructed a strain library with varying expression lev-
els of CpdA and Vfr. Preliminary characterization revealed that high
CpdA expression led to weak output signals and attenuated frequency
response under continuous illumination. To optimize the dynamic
performance, we maintained the native promoter upstream of bPAC
inthe frequency-responsive strainsidentified during initial screening
and finely tuned the expression levels of CpdA and Vfr.

Mathematical modelling revealed that under constant D, the
response Y exhibits functional dependence on oscillation period 7,
hydrolysis rate y, and dimensionless parameters « and A. We used two
distinctfitting approaches to determine the system parameters from
the experimental frequency response data, as detailed in the parameter
fitting flowchart (Extended Data Fig. 2).

Fitl method (multiparameter joint optimization): by fitting the
experimentally obtained Y-T curves withy, @ and A as free parameters
andincorporating the parameter-protein concentration relationships
detailed in Supplementary Note 9, we derived the concentration values
of [CpdAl,, [Vfr], and [bPAC’]. Given the relationships a = k,[bPAC’]/
(yK) and A = [Vfr]y/K,, where y depends on the CpdA and Vfr concentra-

tionsthroughy = %(y0 isthe hydrolysis rate mediated by CpdA

and K| is the Michaelis constant), we performed curve fitting using
equation (6) from the main text. The characteristic frequency param-
eter s'was determined through the relation s* = 1//3a2(1 + 1).

Fit2method (composite parameter approach): alternatively, using
the more detailed equations (9) and (10) from the main text, we can
directly extract the parameters y and s’ by fitting the Y-T curves. This
method consolidates @ and Ainto the composite parameters’, enabling
more robust parameter determination through reduced optimization
complexity.

Our systematic approach involved engineering 65 distinct FDCC
variants by systematically varying promoters and RBS sequences
controlling CpdA and Vfr expressions. Since A scales directly with Vfr
concentration (A = [Vfr],/K,), we obtained strains with varying y, a
and A values. Through systematic characterization of the engineered
strains’ frequency response profiles, we successfully identified strains
exhibiting measurable high-frequency responses.

All the fitting procedures incorporated physiologically realis-
tic constraints based on established protein concentration ranges:
y€[0.001,0.055] s (cAMP hydrolysis rate), A € [10,500] (relative tran-
scription factor abundance) ands’ € [0.005,1] (normalized threshold),
corresponding tointracellular protein concentrations of 0.1-5 uM as
validated through fluorescence microscopy calibration. The detailed
data fitting methodology, including all relevant parameters used in
Fig.3,isprovidedin Extended DataFig. 2 and Supplementary Note 14.

Cultivation of bacterial strains

Inthis study, genetically engineered P. aeruginosa strains were cultured
at37 °C. Unless otherwise specified, biological replicatesin this study
refer to the separate cultivation of individual clones. Strains carrying
the bPAC fragment were protected from light throughout the cultiva-
tion process. The detailed cultivation protocol involved streaking
strains stored at -80 °Con LB agar plates shielded from light with foil.
After overnight incubation for resuscitation, single colonies were
selected and transferred to the FAB culture medium® containing 30 mM
of glutamate and 1 pM of FeCl;. Cultures were agitated at 220 rpm
until OD,,, reached approximately 0.5. Antibiotic concentrations
used during cultivation were 30 pg ml™ of gentamicin, 100 pg ml™ of
tetracycline and 150 pg mi™ of carbenicillin.

Construction of bacterial strains

Allplasmids, strains and promoter sequences are listed in Supplemen-
tary Tables 6-8. Unless otherwise specified, the knockout of all genes
and the seamless insertion of gene fragments into the genome in this
study were accomplished using CRISPR technology. The construction
of relevant plasmids was carried out using Gibson assembly. Supple-
mentary Notes 10 and 11 provide additional details on the construction
strategies for more bacterial strains and plasmids. The chassis strain
FACO1:PAO1-ApsIBCDApelAAexoSAexoTAcyaAAcyaBwas constructed
by the successive knockout of six gene clusters. The experimental
procedure was refined based on existing literature®, with the deletion
ofthe cyaA gene as an example. The specific experimental procedure
is as follows. (1) Construct a plasmid PCRISPR-cyaA containing the
gRNA and homologous recombination segment. (2) Transform the
plasmid PCASPA containing Cas9 into the PAO1 strain, electroporate
the plasmid PCRISPR-cyaA, and plate on a double-resistant plate con-
taining tetracycline and carbenicillin. (3) PCR confirms the successful
knockout of the target gene cyaA inthe resulting colonies. Pick colonies
and culture overnight on LB agar plates without sodium chloride at
15% (wt) surcose to loss plasmids. Sequence verification will confirm
the PAO1-AcyaA strain. Subsequent knockouts of genes like psiBCD,
pelA, exoS, exoT and cyaB can be performed in a similar manner in
the PAO1-AcyaA strain. Subsequently, through the integration of the
PA1/04/03-bPAC fragment into the FACO1 genome utilizing the CTX
transposon insertion system, the engineered strain FACO3 was suc-
cessfully generated.

In the wild-type PAO1 strain, the expression of the vfr and cpdA
genesisregulated by cAMP. To eliminate this specificinfluence, we used
CRISPRtechnology to seamlessly replace the promoters of these genes
with constitutive promoters in the FACO3 bacterial genome (Supple-
mentary Note11). The selectable RBS options encompass BO034-RBSO
46-RBS004-RBS017-RBS021 (ref. 59), whereas the available promoters
include)23106-J23115-J23110-J23100-J23102. Through diverse combina-
tions, atotal of 65 strains were systematically engineered.

To assess the intracellular expression levels of cAMP, we con-
structed aplasmid designated as Plac-sfGFP-TOT1-J23102-CyOFP-pJN1
05and subsequently electroporated it into various chassis cells. Unless
otherwise specified, all strains referenced in the main figures contain
this plasmid. The constitutively expressed CyOFP fluorescent protein
serves as aninternal standard for normalizing bacterial growth differ-
ences. The changeinintracellular cAMP concentrationis calculated by
comparing the ratio of sSfGFP to CyOFP.
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Automated experiment
The automationisland depictedin Fig. 3a serves asaconsolidated area
in which automation instruments, equipment and control modules
catering to specific experimental functions are harmoniously inte-
grated. Componentsinclude robotic arms, microplate reader (Tecan,
Spark), incubator (LiCONiC, STX44-ICBT), liquid handler (Tecan, Flu-
ent 780), plate hotel (LICONiC, LPX220), microplate washer (Tecan,
HydroFlex) and a self-developed steering platform. The intelligent
control system comprises various modules such as process editing,
task scheduling, data analysis, equipment management and so on.
For instance, the task scheduling system can precisely coordinate
equipment operations to achieve automated workflow, and the data
analysis system can collect and analyse experimental datainreal time.
Supplementary Video1presents acomprehensive demonstration
of an automated experimental workflow. The automated platform
allows for the concurrent parallel execution of multiple tasks. Using our
self-developed light control device OPCU, we can program the input
of light signal intensity /, period Tand duty cycle D. Subsequently, we
dispense the bacterial solution into 96-well black plates (LABSELECT,
11514), install the plate into the OPCU and place itin the WareHotels of
the automation island. Then, we start the experiment to achieve the
continuousdilution of bacteriaand data collection. The procedure and
script for the automated experiment are detailed in Supplementary
Fig.4 and Supplementary Note 12.

Bacterial image acquisition

After the completion of the automated experiment, following the
method previously described, the rapid high-throughput acquisition of
microscopicimages of asingle bacteriumina96-well plateis conducted.
The experimental steps are outlined as follows. First, we prepare a1%
agar plate of FAB medium in a 96-well format, with the composition of
the medium identical to that used in the automated experiment. Next,
we pipette 6 pl of the bacterial suspension onto the corresponding wells
ofthe agar plate. Finally, we compress the bacterial suspension to athick-
nessof 0.17 mmonaspecialized microscopeslide. Each well corresponds
to adifferent bacterial strain, and the OPCU is used to set independent
illumination conditions for each well. We use afluorescence microscope
(IX-71, Olympus) equipped with a x100 oil objective to capture four fields
of view for eachwell, with approximately 500 bacteria per field, acquiring
fluorescent images. Fluorescent images of sSfGFP, CyOFP and mScarlet
were acquired by two Zyla 4.2 scientific complementary metal-oxide-
semiconductor cameras. The fluorescence of sSfGFP, CyOFP and mScarlet
was excited using a solid-state light source (Lumencor SPECTRA X).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data supporting the findings of this study are available within the
Article and its Supplementary Information. Source data are provided
with this paper.
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Extended Data Fig. 1| The Chemical Reaction Network (CRN) model and
simulation results corresponding to the FDCC. a, Molecular implementation
of the Frequency-Decoding cAMP Circuit (FDCC). Optogenetic circuit design
incorporating light-activated bPAC and CpdA phosphodiesterase (M1),
cAMP-dependent Vfr transcription factor binding (M2), and protein expression
machinery (M3).b, The simplified CRN model utilized for simulation. The
ellipses represent species in the FDCC, while the circles represent reactions.
The orange, pink, and purple circles correspond to the kinetic reactions within

1
384  xq10¢
modules Wave Converter (M1), Thresholding Filter (M2), and Integrator (M3),
respectively. ¢, Input signals to the simulation: a high-frequency input of1/100 s™
and alow-frequency input 0f1/2400 s™. d, Simulation output from the high-pass
configuration after reaching equilibrium. Parameter settings: [bPAC’]1=0.1uM
(equivalent to 50 molecules under the conversion 2nM=1molecule), [CpdA],
=0.15uM, [Vfr],=0.1uM, and [Plac], =40 nM. e, Simulation output from the
low-pass configuration after reaching equilibrium. Parameter settings:
[bPAC]=5.0 uM, [CpdA],=2.0 puM, [Vfr],=2.0 pM, and [Plac],=40 nM.
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Extended DataFig. 2 | Data processing and formula fitting workflow diagram.
Systematic fitting process for the experimental strains shown in Fig. 3f. The
engineered strains constructed with fixed initial bPAC concentrations at three
different Vfr expression levels, with fine-tuned CpdA expression. Experimental
data collection was performed using an automated platform, recording the
fluorescence intensity (¥) of output proteins at different input frequencies,
which were then normalized to generate frequency-response curves (Yvs 7).
The data analysis adopted a hierarchical fitting strategy: First, strains were
classified into three groups based on Vfr expression levels, assuming that
strains within the same group shared identical A and [bAPC’]. Global fitting

_ 70[CpdAJo/ Ko
1+ [CpdAjy/Ky

Kinetetic parameters

Supplementary Table 3
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(Fitl) was performed to obtain strain-specific y values and shared parameters
(Step-1). Subsequently, precise fitting optimization (Step-2) was conducted by
constraining the range of y values. Based on the correlation model established
inSupplementary Note 8.4, the fitted parameters were converted to protein
concentrations (Step-3). Using the Fit2 model (Step-4), or by calculation based
onthe a and A parameters obtained from Fitl (Step-5) to determain parameter

s". It should be noted that the fitting methods for other independent strain
datasets followed essentially the same procedure with only minor differences, as
detailed in Supplementary Note 14.

Nature Physics


http://www.nature.com/naturephysics

Article

https://doi.org/10.1038/s41567-025-03030-4

a
1.0 # ]
A ; Light
0.8
fdecrease
0.6 |
YB
04t
02 2,=50
| 14,2250
0

Extended Data Fig. 3| Quantitative analysis of noise characteristics and
information capacity in optogenetic gene circuits. a, Obtained through
MATLAB SimBiology stochastic simulations. For the continuousillumination
group (blue), varying input light intensities (corresponding to initial bPAC
concentrations in the CRN) were applied. The steady-state means of both protein
expressions at maximum light intensity served as normalization standards. Data
are presented as mean values with error bars representing standard deviation
(s.d.) obtained from stochastic simulations. The noise values (error-bar) were
obtained from normal distribution fits of steady-state data distributions,
normalized by their respective protein expression means. For duty cycle data,

H (bits)

log,(n)
lightintensity was fixed at maximum (initial bPAC concentration in CRN set
to maximum). Connected data points share identical duty cycles, with three
groups having D=0.05, 0.1, and 0.2 respectively, while periods were varied
(T=100,200,400,800,1600,2400,3600, 5400 seconds). b, For different
numbers of regulatory genes (n), we calculated the number of states in amplitude
modulation only (AM) mode and in combined amplitude and frequency
modulation (FM) mode by sampling parameters a, A, D, and f, with A taken from a
geometric sequence withacommon ratio of 2 starting at 50 (that is, A=50, 100,
200, 400...). The information entropy H was then computed. The curve ofH
versus log,[n] was plotted to determine the slope value.
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Extended Data Table 1| Definitions of non-dimensional symbols and abbreviations in this study

Symbols Physical Significance

Y Steady-state average non-dimensional GFP concentration over one period, defined as y =
1/f
b 1(7) dr, represents the output signal amplitude of the Frequency-Amplitude Control
0

(FAC) system.

y* Steady-state average GFP concentration over one constant light period, defined as y* = (D =
1).
¥ Non-dimensional representation of protein concentration, defined as Y = yi* The normalized

high-frequency output Ygp (theoretical cutoff: 1071 s_l) corresponds experimentally to mea-
surements at 100 seconds, and the normalized low-frequency output Yip (theoretical cutoff:

1072 sfl) corresponds experimentally to measurements at 2400 seconds.

G Non-dimensional representation of frequency influence on the protein output, defined as: G =
1+(su/V3s*)2\ * —1, V3s*(su—sL)
£ [img LB — VB ran ()
€ The discretization parameter, represents the resolution interval between distinguishable output

states when calculating the number of gene expression states.

o i : _ k _ ko[bPACY]
«@ Parameter representing light intensity, defined as o = = oy
A Non-dimensional parameter representing the relative abundance of transcription factor Vfir,

defined as \ = [%{f%l

P Fraction of activated promoters, calculated as: ¢ = m

s The non-dimensional representation of cAMP concentration, defined as s = x/( %), where ©
represents concentration of cAMP, and % represents the theoretical maximum concentration
of cAMP.

s Threshold of M2 filter, representing the non-dimensional concentration of cAMP, defined as
sf=sW"=0), s* = ,/m.

sHg, s, Highest and lowest non-dimensional concentrations of cAMP in one period.

T Non-dimensional time, defined as 7 = ~t.

f Non-dimensional frequency of the period, calculated as f = % = where T' represents the

1

'Y_T’
duration of the light period.

D Duty cycle (D) is the fraction of one period in which light is active, defined as D = ETVK, where

PW is the active time of the light.
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Extended Data Table 2 | Definitions of symbols and abbreviations with physical units in this study

Symbols  Unit Physical Significance

H bits The information entropy, where p; represents the probability of the system occupying
state p;. Han represents the information entropy calculated solely from amplitude
modulation. Hgy; denotes the information entropy computed from both amplitude

modulation and frequency modulation.

Y0[CpdAJo/Ko

5 S The apparent hydrolysis rate of cAMP; v = 1+[CpdAle/ Ko

Ky M The microscopic dissociation constant between cAMP and the phosphodiesterase
CpdA, represents the affinity of the interaction, with the concentration of cAMP
being the ligand concentration required to achieve half-maximal binding of CpdA.

K, pM The microscopic dissociation constant between cAMP and the transcription factor
Vir, represents the affinity of the interaction, with the concentration of cAMP being
the ligand concentration required to achieve half-maximal binding of Vfr.

Ko pM The microscopic dissociation constant for the Vfr-cAMP complex binding to regu-
latory promoters, reflects the affinity of the complex for these promoters, with the
concentration of the Vir-cAMP complex being the ligand concentration required to
achieve half-maximal binding of the promoters.

[bPAC*] uM The concentration of activated state bPAC (bPAC*).

[Vir]o M The initial concentration of Vfr is primarily determined by the promoter and RBS
(ribosome binding site) upstream of the gene.

[CpdA] M The initial concentration of CpdA is primarily determined by the promoter and RBS

(ribosome binding site) upstream of the gene.

Te1 S The characteristic time of the Wave Converter (M1) ranges from 10° to 10! seconds.

T2 s The characteristic time of the Thresholding Filter (M2) ranges from 1072 to 100
seconds.

Tes S The characteristic time of the Integrator (M3) ranges from 10® to 10* seconds.

Tei S The characteristic time of the Wave Converter (M1), ranges from 10° to 10" seconds.

Teo S The characteristic time of the Thresholding Filter (M2), ranges from 1072 to 100
seconds.

Tes S The characteristic time of the Integrator (M3), ranges from 10° to 10* seconds.
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Extended Data Table 3 | The effect of experimental control parameters on the characteristics of FAC

Category Tunable Description Affected Corresponding Relationship
Parameters Parameters
ko[bPAC* 1
¥ Light intensity Gy 5% = M, §s*=,——
vK1 3a2(1+ )
1
Signal /i Period of i f=—
input square-wave T
parameters signal
1 —e¢D e?D 1
D Duty cycle of D, sy, sL sg=——, S = ————
l1—e¢ e?—1
square-wave
signal
[bPAC]o Initial bPAC a, s* [bPAC*] o [bPAC]o
concentration
Vi
System [Vr]o Initial Vir A, s* e LD
pa_rameters concentration K
in gene CpdA]o/K
circuit [CpdA]p Initial CpdA v, a, s* = M
concentration 1+ [CpdA]o/Ko
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